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The compute andmemory demands for deep learning andmachine learning (ML) have
increased by several orders of magnitude in just the last couple of years, and there is no
end in sight. Traditional improvements in processor performance alone struggle to keep
up with the exponential demand. A new chip architecture co-designed with the ML
algorithms can be better equipped to satisfy this unprecedented demand and enable the
ML workloads of the future. This article describes the Cerebras architecture and how it is
designed specifically with this purpose, from the ground up, as a wafer-sized chip to
enable emerging extreme-scaleMLmodels. It uses fine-grained data flow compute cores
to accelerate unstructured sparsity, distributed static random-access memory for full
memory bandwidth to the data paths, and a specially designed on-chip and off-chip
interconnect for ML training. With these techniques, the Cerebras architecture provides
unique capabilities beyond traditional designs.

The field of modern machine learning (ML) is rela-
tively new, and we are already reaching a pace
that is often limited by traditional approaches to

training and inference. In 2018, state-of-the-art neural
networks such as BERT1 had 100 million parameters.
Two years later, the famous GPT-32 had 175 billion
parameters. There is no end in sight; next, the ML com-
munity is striving to run models with trillions of parame-
ters. That represents more than 1000� growth in
compute demand in just two years, as shown in Figure 1.

This is the grand ML demand challenge in front of
the industry. At Cerebras, we believe that we can meet
this unprecedented demand. We cannot do it by relying
on just a single solution. It must be addressed by mak-
ing substantial improvements—by an order of magni-
tude or more—across a broad spectrum of multiple
different components. To meet this unprecedented
demand, we target order-of-magnitude improvements
in three key areas:

Core architecture: to enable performance scal-
ing beyond raw floating-point operations per
second (flops) alone.

Scale-up: to accelerate process improvements
beyond Moore’s law.
Scale-out: to improve and simplify distributed
clustering.

We believe all of these are required to keep up with
this unprecedented demand. To achieve improvements
in all three areas, our architecture is co-designed from
the ground up specifically for neural networks. In the
following sections, we describe each area in detail.

OVERVIEW
The foundation of the Cerebras architecture is the
first-ever wafer-sized processor chip, called the wafer-
scale engine (WSE), which was released in 2019. The
second-generation WSE-2 was released in 2021 and is
focus of this article. It is the largest processor ever
built, at 46,000 mm2 in size and containing 2.6 trillion
transistors. Surrounding each WSE-2 is a custom-built
system called the CS-2. Within each CS-2 and WSE-2, a
wafer-scale on-chip fabric connects 850,000 cores that
are specifically designed for ML workloads. In contrast
to traditional processors, the Cerebras core uses fine-
grained data flow to accelerate unstructured sparsity,
which makes it particularly well suited for neural
networks, which often have natural sparsity or can
be sparsified. Memory is entirely distributed static
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random-access memory (SRAM) instead of dynamic
RAM (DRAM) to provide full memory bandwidth to the
every core’s data path. With so many cores and spar-
sity acceleration, many large ML models can be solved
with a single WSE-2 alone. However, to address emerg-
ing extreme-scale ML models, the Cerebras architec-
ture uses an off-chip fabric to extend to a cluster of
CS-2 systems. The cluster architecture leverages the
scale of each CS-2 to provide simple data parallel-only
scaling to the larger models and larger clusters.

CORE ARCHITECTURE
The core is specially designed for the fine-grained
dynamic sparsity in neural networks. The core physical
design is shown in Figure 2. It is a small-core design, at
approximately 38,000 lm2 of silicon area in the Taiwan
Semiconductor Manufacturing Company (TSMC) 7 lm
process. Half of the silicon area is used by 48 kB of
memory. The other half is logic, made up of 110,000
standard cells. The entire core runs at 1.1-GHz clock fre-
quency and consumes 30 mW of peak power.

Memory
Traditional memory architectures modern processors,
such as AMD Milan3 or Nvidia Hopper,4 use shared
central DRAM, but DRAM is both relatively slow and
far away when compared to the compute performance.
Even with advanced techniques like high-bandwidth
memory (HBM3),5 the relative bandwidth from memory
is significantly lower than the core data path band-
width. For example, it is common for GPU compute
data paths to have 100 times more bandwidth than
DRAM memory bandwidth. This means each operand
from a memory must be used at least 100 times in the

data path to keep utilization high. The traditional way
to handle this is by using data reuse through local
caching or local registers and accumulators.

Instead of the traditional approach, the Cerebras
architecture provides full memory bandwidth to all data
paths at full performance, removing the need for data
reuse. This is accomplished by fully distributing themem-
ory right next to where it is used, which enables memory
bandwidth that is equal to the operand bandwidth of the
core data path. To make this possible, we take advan-
tage of the physical properties of shorter distance com-
munication. Driving the bits only tens of microns from
local memory to the data path, all on silicon, is much eas-
ier than through a package to an external device.

Each small core has 48 kB of local SRAM dedicated
to the core. That memory is designed to optimize den-
sity while providing full performance to the data path:
192-bit access per cycle from two 64-bit reads and one
64-bit write. This is achieved by organizing the memory
into eight single-ported banks that are each 32 bits
wide, as shown in Figure 3. With that organization,
there is 256-bit access per cycle providing more raw
memory bandwidth than the data path. The 32-bit bank
size was chosen to achieve high density while minimiz-
ing bank conflicts in typical ML workloads. It is impor-
tant to note that all of the memory is independently
addressed per core. There is no shared memory in the
traditional sense. To enable truly scalable memory, all
of the sharing between cores is done explicitly through
the fabric. In addition to the high-performance SRAM,
there is also a small 256-B software-managed cache
that is used for frequently accessed data structures,
such as accumulators. This cache is designed to be

FIGURE 1. Memory and compute requirements for various

state-of-the-art neural networks on a log–log scale. PFLOP:

peta-floating-point operations per second. FIGURE 2. The Cerebras core physical design: 50% of the area

is static random-access memory (SRAM) and 50% of the area

is logic.

HOT CHIPS 34

May/June 2023 IEEE Micro 3



physically very compact and close to the data path to
minimize power for these frequent accesses.

The SRAM uses 50% of the die area, which is in line
with the area used for traditional caches, register files,
and memory controllers in CPU or GPU designs. Per
unit area, our SRAM memory design is higher density
than traditional caches because it is not a cache; it
does not have overhead such as multiporting, tagging,
and cache management logic. Additionally, by not
using DRAM, our design also does not incur the die
area and power of double data rate or HBM memory
controllers, which can be large, especially for high-
bandwidth designs. The most significant tradeoff of
using SRAM instead of DRAM is in capacity because
SRAM density is lower than that of DRAM. The wafer-
scale integration is used to make up the capacity to
achieve DRAM equivalent capacity per chip.

With this distributed memory architecture and
DRAM equivalent capacity, the design can be consid-
ered an in-memory compute architecture that achieves
significantly higher aggregate memory bandwidth than
traditional shared DRAM memory architectures. Nor-
malizing to the GPU area, the Cerebras memory band-
width is approximately 200 times higher within the
same silicon area,a directly to the data paths.

Full Performance at All Basic Linear
Algebra Subroutine (BLAS) Levels
With such high memory bandwidth, the design is capa-
ble of running matrix operations out of memory at
full performance across all BLAS levels, as shown in
Figure 4. Traditional CPU and GPU architectures with
limited off-chip memory bandwidth are limited to run-
ning only general matrix–matrix multiply (GEMM) oper-
ations at full performance. Any BLAS level below full
GEMM requires a large jump in memory bandwidth
because there is less data reuse. This becomes chal-
lenging with traditional architectures, but with enough
memory bandwidth, we can enable full performance all
the way down to vector–scalar multiply (AXPY). Within
neural network computation, this capability is impor-
tant because it enables fully unstructured sparsity
acceleration. A sparse GEMM is simply a collection of
AXPY operations, with one operation for every nonzero
element, making this level of memory bandwidth a pre-
requisite for unstructured sparsity acceleration.

Programmability
The foundation of the Cerebras core is a fully general
processor that can be programmed to adapt to the
changing field of ML. Like any general-purpose proces-
sor, it supports a full set of general-purpose ins-
tructions that include arithmetic, logical, load/store,
compare, and branch instructions. These instructions
are fully local to each core, stored in the same 48 kB of
local memory as the data. This is important because it
means that every core is independent, which enables
very fine-grained, dynamic computation globally across
the entire chip. These general-purpose instructions
operate on 16 general-purpose registers, and they run
in a compact six-stage pipeline. For ML workloads, all
instructions are statically loaded upfront using a con-
figuration interface, and they do not change during
execution. Given that the same instructions are reused
repeatedly (which could be millions of times in neural
network training), the time to load the instructions
does not appreciably impact overall performance.

On top of this general-purpose foundation, there is
hardware support for tensor instructions that are
intended for all data processing. These tensor opera-
tions execute on the underlying 64-bit data path, which
is made up of four 16-bit fused-multiply-accumulate
(FMAC) units supporting both floating point (FP)16 and
brain floating point (BF)16 data types. The FMAC accu-
mulator optionally supports either the native 16-bit

FIGURE 3. The Cerebras core memory design. Memory is

organized into 8� 6-kB SRAM banks with an additional 256 B

of software-managed cache. SW: software; FMAC: fused

multiply-accumulate.

aGPU normalized comparison is the WSE-2 memory band-
width (400 TB/s) in equivalent area against that of the Nvi-
dia A100 (2 TB/s).

HOT CHIPS 34

4 IEEE Micro May/June 2023



format or FP32 data type. To optimize for performance
and flexibility, the instruction set architecture has ten-
sors as first-class operands, just like general-purpose
registers or memory. Figure 5 shows an example of an
FMAC instruction operating on 3-D and 2-D tensors as
operands directly.

The core uses data structure registers (DSRs) as
operands to the instructions. Our core has 44 of these
DSRs, each of which contains a descriptor with a
pointer to the tensor and other key information, such
as length, shape, and size of that tensor. With these
DSRs, the hardware architecture is flexible enough to
natively support up to 4-D tensors that are in memory;
fabric-streaming tensors; first-in, first-out buffers; or
circular buffers. Behind the scenes, there are hardware
state machines that use the DSRs and sequence
through the full tensor at full performance on the
data path.

Instructions for each individual core are generated
by the Cerebras software stack and compiler,b which
lowers ML programs from frameworks, such as Tensor-
Flow or PyTorch.

Fine-Grained Data Flow Scheduling
On top of these tensor operations, the core uses fine-
grained data flow scheduling. All computation is trig-
gered by the data, as shown in Figure 6. The fabric
transports both the data and the associative control
directly in the hardware. Once the cores receive that
data, the hardware triggers a lookup of instructions to
run. That lookup is entirely based on what is received
in the fabric. With this data flow mechanism in the
cores, the entire compute fabric is a data flow engine.
This enables native sparsity acceleration because it
only performs work on nonzero data. We filter out all of
the zero data at the sender, so the receiver does not
even see it. Only nonzero data are sent, and that is
what triggers all of the computation. Not only do we
save power by not performing the wasted compute,
but we get acceleration by skipping it and moving on
to the next useful compute. Since the operations are
triggered by single data elements, this accelerates fine-
grained fully unstructured sparsity. The level of power
saving and acceleration is not capped since this capa-
bility enables all forms of sparse ML techniques and
gives the ML user control of the performance through
algorithmic changes.

To complement the dynamic nature of data flow,
the core also supports eight simultaneous tensor oper-
ations, which we call microthreads. These are indepen-
dent tensor contexts that the hardware can switch
between on a cycle-by-cycle basis. The scheduler is
continuously monitoring the input and the output
availability for all of the tensors that are being proc-
essed, and it picks an eligible microthread with all
of its resources available. Each microthread is also
assigned a priority, so, if multiple microthreads are eli-
gible to run, the scheduler will pick the higher priority

FIGURE 5. Example of FMAC instruction with tensors as first-

class operands.

FIGURE 4. BLAS levels of linear algebra computation andmemory bandwidth requirements for FP16 flops (1 MAC¼ 2 flops). Note

that Sparse-GEMM is comprised of one AXPY per nonzero matrix element. AXPY: vector–scalar multiply; BLAS: basic linear alge-

bra subroutine; GEMM: general matrix–matrix; MAC: multiply–accumulate; FP16: floating point 16 bit; GEMM: general matrix-

matrix multiply; GEMV: general matrix-vector multiply; DOT: dot product.

bCerebras software resources can be found at https://
www.cerebras.net/product-software/.
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microthread. Each microthread has full access to all
resources, including registers and memory in the core,
without any static partitioning. As with instructions,
each core has its own independent microthreads, so

context switching is entirely independent per core,
enabling it to drive up utilization during dynamic behav-
ior by switching to other tasks independently when
there would otherwise be bubbles in the pipeline.

With this fine-grained, dynamic, small-core architec-
ture, we can achieve high compute performance—as
high as 10�more utilization than GPUs on unstructured,
sparse computec or, potentially, even more with higher
sparsity. Coming back to the grand challenge, this
sparse utilization advantage is how we target an order-
of-magnitude improvement from the core architecture.

SCALE-UP: AMPLIFYING
MOORE’S LAW

Traditionally, scaling up within a chip has been the
domain of semiconductor foundries. Moore’s law6 has
carried the industry for decades, enabling denser and
larger chips. Today, Moore’s law continues to improve
chip scale but only by relatively incremental gains, on
the order of 2� improvement per process generation,
which, alone, is not enough to satisfy the ML demand.
Within the Cerebras architecture, our design goal is to
amplify Moore’s law and get improvement by an order
of magnitude or more.

The traditional way to amplify Moore’s law is to
make larger chips. We did that with wafer-scale inte-
gration, and the result is the WSE-2 fabricated on the
TSMC N7 process. The WSE-2 is the largest chip ever
built, at 56� larger than the largest GPU today. It is
more than 46,000 mm2 in size, with 2.6 trillion transis-
tors on a single chip, and it contains 850,000 cores.
With all of those cores integrated on a single piece of
silicon, the single chip has 20 PB/s of memory band-
width and 220 Pb/s of fabric bandwidth. The WSE-2
improves on the 16-nm design of the first-generation
WSE-1, which had fewer than half the number of cores
(400,000) as well as associated memory and fabric
bandwidth.

We built a specially designed system around the
WSE-2, called the CS-2. The system was co-designed
around the WSE-2, enabling the wafer-scale chip to be
used in a standard data center environment.

To build up to wafer from the small cores, first we
create a traditional die with 10,000 cores each. Instead
of cutting up the die to make traditional small chips,
we keep it intact, but we carve out the largest square
within the round 300-mmwafer. The final chip contains
a total of 84 dies, with 850,000 cores, all on a single
chip, as shown in Figure 7.

FIGURE 6. Core data path and data flow scheduling to enable

acceleration of fine-grained dynamic unstructured sparsity.

(Top) Control information from the fabric triggers the core to

look up the operation and associated tensor information. (Bot-

tom) The data from the fabric is used directly by the data path

to perform the computation, as directed by the control. Ctrl: con-

trol; DSR: data structure register; GPR: general purpose register.

cGPU utilization comparison is estimated against 10�
unstructured sparse compute on the Nvidia A100.

HOT CHIPS 34

6 IEEE Micro May/June 2023



High-Bandwidth, Low-Latency Fabric
The wafer-sized chip is only possible if the underlying
architecture can scale to that extreme size. The funda-
mental enabler is the fabric. It needs to enable effi-
cient and high-performance communication across
the entire wafer. Our fabric does this by using a 2-D
mesh topology, as shown in Figure 8, that is well suited
to scale on silicon with extremely low overhead. This
fabric ties together all of the cores, where each core
has a fabric router within the mesh topology. The fabric
routers have a simple five-port design, with 32-bit

bidirectional interfaces in each of the four cardinal
directions and one port facing the core itself. Each
router uses lossless flow control with low buffering.
This design enables single clock cycle latency between
nodes while remaining relatively low cost in terms of
silicon area and power.

The fundamental data packet is a single 16-bit data
element (FP16 or BF16) optimized for neural network
training. Along with those 16-bit data, there are 16 bits
of control information, making up a 32-bit fine-grained
packet. To optimize the fabric design further, it uses

FIGURE 7. Scaling from small core to entire wafer. WSE: wafer-scale engine.

FIGURE 8. High-bandwidth, low-latency fabric. There is a five-port fabric router in each core that has dedicated buffers for each

statically configured route (color).
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entirely static routing, which is efficient and has low
overhead while matching to the requirements of neural
network static connections. To enable multiple routes
on the same physical link, each core has 24 local static
routes that can be configured, called colors. All of the
colors are nonblocking between one another, and they
are all time-multiplexed onto the same physical links.
Globally, these local independent colors are combined
to support a large number of total routes throughout
the entire core array. Additionally, each color is used
for a variety of different data and control communica-
tions, so the fixed 24 colors enable far more different
messages or tasks in total. Finally, neural network com-
munication inherently has a high degree of fan-out, so
our fabric is designed with native broadcast and multi-
cast capabilities within each fabric router.

To scale this fabric, we simply extend it out physi-
cally in both the x- and y-dimensions. Scaling within a
single die is simple. To scale beyond the die, we extend
the fabric across die boundaries. The fabric crosses
less than a millimeter of scribe line using high-level
metal layers within the TSMC process. This extends
the 2-D mesh compute fabric to a fully homogeneous
array of cores across the entire wafer. The die-to-die
interface is an efficient, source-synchronous, parallel
interface. Each interface has only a few short wires
in high-level metal, making it highly resilient to defects.
However, at the wafer scale, all interfaces add up
to more than 1 million wires, so defects are unavoid-
able, and redundancy must be built directly into the
underlying protocol. We do that with auto-correction
state machines that automatically use redundant links
when errors are discovered by training and error detec-
tion. Therefore, even with inevitable localize defects
in the fabrication process, most die-to-die interfaces
remain functional.

These simple short wires are the key enabler of effi-
cient scale-up because they span less than amillimeter
of distance on silicon. When compared to traditional
serializer/deserializer (SERDES) communication, the
difference is significant. Just like the memory, the
physical properties mean that driving bits less than a

millimeter on the chip is much easier than across pack-
age connectors, printed circuit boards, and sometimes
even cables. The result is an orders-of-magnitude
improvement compared to traditional input–output
(IO), as shown in Figure 9. The on-wafer fabric achieves
about an order of magnitude more bandwidth per unit
area and almost two orders of magnitude better power
efficiency per bit. All of these results translates into on-
chip-level fabric performance across the entire wafer:
7� more bandwidth than GPU die-to-die bandwidth in
the same GPU area at only 6 W of power.d This level of
global fabric performance is what enables the wafer to
operate as a single chip.

Weight Streaming Enables the
Largest Models
The fabric enables the execution of extremely large
neural networks all on a single chip. The WSE-2 has
enough performance and capacity to run even the
largest state-of-the-art models without partitioning or
complex model parallel distribution. This is done by dis-
aggregating the neural network model, the weight
memory, from the compute, as shown in Figure 10. We
store all of the model weights externally in a device
called MemoryX, and we stream all of the weights onto
the CS-2 system as they are needed to compute each
layer of the network, one layer at a time. Weights
are stored in DRAM and flash memory in MemoryX
and streamed into the CS-2 at its full IO bandwidth of
1.2 Tb/s. The weights are never stored on the CS-2 sys-
tem, not even temporarily, because the CS-2 performs
the computation using the underlying data flow mech-
anisms in the cores.

Using data flow scheduling, each individual weight
triggers the computation as an individual AXPY opera-
tion on a batch of activations resident on the wafer

FIGURE 9. Comparison of on-wafer fabric interconnect to tra-

ditional interconnect in terms of raw bandwidth and power.

JUST LIKE THEMEMORY, THE
PHYSICAL PROPERTIESMEAN THAT
DRIVINGBITS LESS THANA
MILLIMETERON THECHIP ISMUCH
EASIER THANACROSS PACKAGE
CONNECTORS, PRINTEDCIRCUIT
BOARDS, AND SOMETIMES EVEN
CABLES.

dGPU estimate uses a 7-nm peripheral component inter-
connect express (PCIe) 5.0 SERDES with the Nvidia A100
NVLink bandwidth. WSE-2 subfabric uses a subset of the
wafer area equivalent to that of the Nvidia A100.
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memory. Once each weight is complete, it is discarded,
and the hardware moves on to the next weight without
ever storing the weight on the chip. Since the weights
are never stored, the size of the model is not con-
strained by the memory capacity on chip. To amortize
the cost of streaming each weight from the external
MemoryX, each weight is natively reused multiple
times on the CS-2 by using it for a batch of activations.
On the backward pass, the gradients are streamed out
in the reverse direction back to the MemoryX unit,
where the weight updates happen.

Wafer Matrix-Multiply (MatMul) Array
Neural network layers are composed of matrix multipli-
cation. Because of the scale of the WSE-2, we can use
all 850,000 cores of the wafer as a single giant MatMul
array. For transformer models like GPT, for example,
activation tensors have three logical dimensions:
batch, sequence, and hidden dimension. We split these
tensor dimensions over the 2-D grid of cores on the

wafer. The hidden dimension is split over the fabric in
the x-direction, and the batch and sequence dimen-
sions are split over the fabric’s y-direction, as shown in
Figure 11. This arrangement allows for efficient weight
broadcast and reductions over the sequence and hid-
den dimensions.

With activations stored on the cores where the
work will be performed, the next step is to trigger the
computation on those activations. This is done by
using the on-chip broadcast fabric to send the weights,
the data, and the commands to each column. Using
the hardware data flow mechanisms, the weights then
trigger the FMAC operations directly. Since the broad-
cast occurs over columns, all cores containing the
same subset of hidden dimension features receive the
same weights. Additionally, we send commands to trig-
ger other computations, such as reductions or nonlin-
ear operations.

More specifically, the MatMul operation starts by
broadcasting the first row of weights across the wafer,

FIGURE 11. Logical tensor distribution onto the physical wafer matrix-multiply (MatMul) array. The hidden (H) dimension is split

over the fabric in the x-direction, and the batch (B) and sequence (S) dimensions are split over the fabric’s y-direction.

FIGURE 10. Weight streaming disaggregates model weights from compute to enable all model sizes on a single chip. The model

(on the left) weights are stored in the external MemoryX unit (shown as colors) and streamed to the CS-2 system.
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as shown in Figure 12. Within that row, there are multi-
ple weights that map onto a single column. When there
is sparsity, only those nonzero weights are broad-
casted to the column, triggering FMAC computations
only for dense weights. We skip all the zero weights,
and we stream in the next nonzero weight. This tech-
nique is what produces a sparsity acceleration.

This operation uses several key properties of the
core architecture. When a weight arrives, using the
hardware data flow scheduling of the core, it triggers
an FMAC operation on the data path, as shown in
Figure 13. The weight value is multiplied with each of
the activations already in SRAM memory and added
into a local accumulator in the software-managed
cache. The series of multiple FMACs is performed
using a single tensor instruction with the activations
as a tensor operand. All of these operations are done
without additional overhead on the core. Additionally,
there is no memory capacity overhead for the weights
since, once the compute done, the core moves on to
the next weight, never storing any of the weights. Once
all weights for the row have been received, each core
contains a partial sum that needs to be reduced across
the row of cores.

That reduction is then triggered by a command
packet broadcasted to all the cores of each column.
Again, using the data flow scheduling of the core, once
the command packet is received, it triggers the partial
sum reduction, also shown in Figure 13. The actual
reduction compute is also performed using a single ten-
sor instruction, this time with fabric tensor operands.

All of the columns receive a partial sum command
(PSUM), except one column receives a special final
sum command (FSUM). The FSUM command indicates
to the core that it should store the final sum, ensuring
that the output features are stored using the same dis-
tribution as was used for the input features, setting up
for the next layer to proceed the same way. Once the
core receives the commands, it communicates using a
ring pattern across the entire wafer, which is set up
using the static routing colors of the on-chip fabric.
Using microthreads in the core, all of the reduction is
overlapped with the FMAC compute for the next
weight row, which starts in parallel. Once all rows of
weights are processed, the full MatMul operation is
complete, and all of our activations are in place for the
next layer.

This mapping of the MatMul onto the wafer enables
neural networks of practically all sizes to run with high
performance on the single chip. The unique core mem-
ory and fabric architecture enable extremely large
matrices to be supported without blocking or model
parallel partitioning. Even the largest models with up to
100,000� 100,000 MatMul layers can run without split-
ting up the matrix. Across all cores of the WSE-2 chip,
the result is 75 Pflops of FP16 sparse peak performan-
cee (and, potentially, even more with higher sparsity) or
7.5 Pflops of FP16 dense peak performance, all on a sin-
gle chip. The WSE-2 has the same peak performance
for BF16. Now, bringing this back to the grand ML

FIGURE 12. Weight broadcast across the wafer MatMul array.

eSparse performance with 10� sparsity acceleration.
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demand challenge, leveraging wafer-scale co-design
in this way is how we achieve an order-of-magnitude-
level improvement in scaling up.

SCALE-OUT: WHY IS IT SO
HARD TODAY?

ML clustering solutions already exist today, but it is still
so hard to scale out. To understand why, we will look at
existing ML scale-out techniques in distributed frame-
works, such as DeepSpeed,7 as shown in Figure 14. The
most common is data parallel. Data parallel is the sim-
plest approach because it just replicates the model in
each device, but it does not work well for large models
because the entire model needs to fit in each device.
To solve that problem, a common approach is pipelined
model parallel. This approach splits the model and

runs different layers on different devices as a pipeline.
However, as the pipeline grows, the activation memory
increases quadratically to keep the pipeline full, which
is prohibitive for large models. To avoid that, another
common approach is to run a form of model parallel
by splitting layers across devices, called tensor model
parallel. This approach has significant communication
overhead, and splitting individual layers is compli-
cated. Ultimately, because of all of these constraints,
there is no single one-size-fits-all way to scale out
today. In fact, in most cases, training large models
requires a hybrid approach with all three forms
of parallelism.

Therefore, although scale-out solutions exist, they
have many limitations. The fundamental reason is
because, in traditional scale-out, memory and compute
are tied to each other. Trying to run a single model on

FIGURE 13. Sparse-GEMM computation on the wafer MatMul array. (Top) The weights trigger the AXPY operations using the

data flow schedulingmechanism. (Bottom) The partial sums are accumulated in a ring and distributed across the fabric.
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thousands of devices turns the scaling of both memory
and compute into distributed constraint problems that
are interdependent.

The result of this complexity is shown in Figure 15,
which shows the largest models trained on GPUs over
the last few years and the different types of parallelism
used. We derived the parallelism breakdown from
the publications of MegatronV1,8 T-NLG,9 GPT-NeoX,10

GPT-3,2 PanGu-a,11 MegatronV2,12 and MT-NLG.13 As
the models get larger, the more types of parallelism are
needed, and this results in a tremendous amount of
complexity. For example, the level of tensor model par-
allelism is always limited to 8� because that is the

number of GPUs that are typically in a single server
with high internal interconnect bandwidth. As a result,
most parallelism for large models is pipelined model
parallelism, but that has quadratic memory tradeoffs.
Training these models on GPU clusters requires navi-
gating all these bespoke distributed system problems.
This complexity results in longer development times
and, often, suboptimal scaling.

Data Parallel-Only Scaling
On the other hand, because the Cerebras architecture
enables running even the largest models on a single
chip without partitioning, scaling simply with data

FIGURE 14. Traditional scale-out parallelism techniques and their challenges.

FIGURE 15. Parallelism breakdown for various state-of-the-art models. Largemodels use all three forms of parallelism: data paral-

lel, pipelinemodel parallel, and tensor model parallel.
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parallel only is possible, without any of the complexity
of any form of model parallel partitioning.

Data parallel scaling is donewith a specially designed
interconnect called SwarmX, as shown in Figure 16.
SwarmX sits between the MemoryX units that hold the
weights and the CS-2 systems for compute, but it is
completely independent from both. SwarmX broad-
casts weights to all CS-2 systems, and it reduces gra-
dients from all CS-2s, making it an active component in
the training process, purpose-built for data parallel
scale-out. Internally, SwarmX uses a tree topology to
enable modular and low-overhead scaling. Because it is
modular and disaggregated, it can scale to any number
of CS-2 systems with the same execution model as a
single system. Scaling to more compute is as simple as

adding more nodes to the SwarmX topology and adding
more CS-2 systems. Using this scalable cluster design
is how the Cerebras architecture addresses the last
component of the grand ML demand challenge to
improve and drastically simplify scale-out.

CONCLUSION
In the past couple of years, we have seen demand of
more than three orders of magnitude greater from ML
workloads. There is no sign of slowing down, so the
next couple of years could see the ML demand increas-
ing by another several orders of magnitude, as shown
in Figure 17. The Cerebras architecture is designed
from the ground up to address this challenge.

The architecture principal is to break from traditional
techniques and improve by an order of magnitude in
three key areas: 1) by improving the core architecture by
an order of magnitude with unstructured sparsity accel-
eration, 2) by scaling up by an order of magnitude with
wafer-scale chips, 3) by improving cluster scale-out by
an order of magnitude with truly scalable clustering.
With all of these techniques together, we believe this
future is achievable.

Neural network models are continuing to grow
exponentially. Few companies today have access to
them, and that list is only getting smaller. With the Cer-
ebras architecture, by enabling the largest models to
run on a single device, data parallel-only scale-out, and
native unstructured sparsity acceleration, our goal is
to make these large models available to everyone.
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