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Abstract

Recent works have explored the use of weight sparsity to improve the training effi-
ciency (test accuracy w.r.t training FLOPs) of deep neural networks (DNNs). These
works aim to reduce training FLOPs but training with sparse weights often leads to
accuracy loss or requires longer training schedules, making the resulting training
efficiency less clear. In contrast, we focus on using sparsity to increase accuracy
while using the same FLOPS as the dense model and show training efficiency
gains through higher accuracy. In this work, we introduce Sparse-IFT, a family
of Sparse Iso-FLOP Transformations which are used as drop-in replacements for
dense layers to improve their representational capacity and FLOP efficiency. Each
transformation is parameterized by a single hyperparameter (sparsity level) and
provides a larger search space to find optimal sparse masks. Without changing any
training hyperparameters, replacing dense layers with Sparse-IFT leads to signifi-
cant improvements across computer vision and natural language processing tasks,
including ResNet-18 on ImageNet (+3.5%) and GPT-3 Small on WikiText-103
(-0.4 PPL), both matching larger dense model variants that use 2x or more FLOPs.
To our knowledge, this is the first work to demonstrate the use of sparsity for
improving the accuracy of dense models via a simple set of sparse transformations.
Code is available at: https://github.com/CerebrasResearch/Sparse-IFT.

1 Introduction

Increases in model size and training data have led to many breakthroughs in deep learning (e.g.,
AlexNet [41], ResNet [30], Transformers [89], GPT [69, 70], AlphaGo [77], etc.). Consequently,
computational and memory demands for training and deploying deep neural networks (DNNs)
have surged dramatically. To enable the deployment of large models, multiple techniques (e.g.,
distillation [32], quantization [28], pruning [29]) have been introduced to reduce inference FLOPs
and memory requirements. While these techniques improve inference efficiency (test accuracy w.r.t
inference FLOPs), the associated training costs are still prohibitive. In this work, we focus on
improving the training efficiency (test-accuracy w.r.t training FLOPs) of DNNs.

Recent works [19, 37] have explored using weight sparsity to reduce the FLOPs spent in training.
Frankle and Carbin [20] demonstrate that sparse subnetworks (termed “lottery tickets”) exist at
initialization and can be trained to match the accuracy of their original dense network. Inspired by this
result, various dynamic sparse training (DST) methods [19, 37, 52, 58] attempt to find optimal sparse
subnetworks within a training run. While these methods primarily aim to improve training efficiency
by reaching dense accuracy with fewer FLOPs, they often perform worse than their dense baselines
or rely on longer training schedules (up to 2-5× training iterations) to close the gap [51, 83, 94].

*Equal Contribution.

Workshop on Advancing Neural Network Training at 37th Conference on Neural Information Processing Systems
(WANT@NeurIPS 2023).

https://github.com/CerebrasResearch/Sparse-IFT


As a result, these techniques can sometimes even require more FLOPs than training the dense
model [19, 37, 58]. Our aim is to highlight our unique contribution in utilizing sparsity to enhance
standard dense model accuracy, distinguishing our work from previous research. While past studies
focused on pruning techniques to improve accuracy of pre-trained dense models [29, 56, 63], our
innovation lies in demonstrating sparsity’s impact on accuracy when training from scratch within the
same training FLOP budget as dense models. Specifically, we introduce a family of Sparse Iso-FLOP
Transformations (Sparse-IFT) that can be used as drop-in replacements for dense layers in DNNs.
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Figure 1: Accuracy vs. Training FLOPs for different
variants of ResNet on ImageNet. Sparse-IFT provides
significant accuracy gains across different models and
sparsity levels while using the same FLOP budget as
its dense counterpart.

These transformations increase the repre-
sentational capacity of layers and facilitate
the discovery of optimal sparse subnetworks
without changing the layer’s underlying train-
ing and inference FLOPs (i.e., Iso-FLOP).
For example, making a layer wider but
sparser increases dimensionality while still
maintaining FLOPs due to sparsity. All
Sparse-IFT members are parameterized by a
single hyperparameter, the sparsity level. Fig-
ure 1 summarizes the ImageNet performance
with ResNet models, where our Sparse Wide
IFT variants significantly increase the accu-
racy of matching Iso-FLOP dense models. In
particular, Sparse Wide ResNet-18 at 90%
sparsity improves the top-1 accuracy from
70.9% to 74.4% (+3.5%), and outperforms
a dense ResNet-34 (74.2%) while using 2x
fewer FLOPs. We emphasize that these gains
were obtained by replacing dense layers with
transformations from the Sparse-IFT family
and required no changes to training hyperparameters. The main contributions of our work are:

1. We introduce Sparse Iso-FLOP Transformations (Sparse-IFTs), a family of techniques aimed
at enhancing DNN training efficiency. These transformations boost accuracy while main-
taining a constant FLOP count. Sparse-IFTs are characterized by a single hyperparameter,
sparsity level, and can be seamlessly used as drop-in replacements for dense layers.

2. In the CV domain, using Sparse-IFT increases the top-1 accuracy of ResNet-18 and ResNet-
34 by 3.5% and 2.6% respectively on ImageNet. Finetuning these pre-trained models for
object detection (MS COCO) and segmentation (CityScapes) leads to an improvement of
5.2% mAP and 2.4% mIoU, respectively.

3. In the NLP domain, using Sparse-IFT with GPT-3 Small leads to a 0.4 perplexity improve-
ment on the WikiText-103 language modeling task, and matches the PPL of a dense GPT-3
Medium while using 2.4x fewer training FLOPs.

2 Method

In this section, we present our method to improve training efficiency. We first explain our intuition
and hypotheses, followed by our methodology.

Training with Dense Matrices is FLOP Inefficient Prior research indicates that modern DNNs are
overparameterized, and they exhibit sparsity in both features and weights across layers. The Lottery
Ticket Hypothesis (LTH) [20] demonstrates that sparse DNNs can achieve the same accuracy as
dense counterparts when initialized with an effective sparsity mask (“lottery ticket”). These findings
emphasize the advantage of sparse weight configurations over dense matrices during training. While
sparse training methods are theoretically more efficient, their practical application often results in
lower accuracy compared to dense baselines. This discrepancy may be attributed to the challenges
of identifying “lottery tickets” within a single training run. While sparse models reduce the FLOPs
needed per step, we hypothesize that existing sparse training methods make sub-optimal use of these
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Figure 2: Different members of the Sparse-IFT family. Transformation of all members is parameter-
ized by a single hyperparameter (i.e., sparsity level (s)). Black and white squares denote sparse and
active weights, respectively. Green block indicates a non-linear activation function (e.g., BatchNorm,
ReLU, LayerNorm). All transformations are derived with sparsity set to 50% as an example, are
Iso-FLOP to the dense feedforward function fθl , and hence can be used as a drop-in replacement of
fθl . See Section 2.2 for more details about each member.

computational savings. For example, state-of-the-art sparse training methods [19, 37, 51, 83, 94]
invest these FLOP savings into longer training schedules to close the accuracy gap and compensate
for the inability to discover an optimal mask earlier in training. This setup is inefficient since it
ultimately requires more training FLOPs than the dense baseline to reach the same target accuracy.
In our work, we take an orthogonal approach and invest these FLOP savings into (a) increasing the
representational capacity of a layer and (b) increasing its search space, which we hypothesize can
facilitate the discovery of an optimal sparse mask [74, 80]. While utilizing larger sparsity-enabled
models has exhibited accuracy improvement potential, the challenge lies in designing an appropriate
architecture. For instance, when aiming to surpass the ResNet-18 performance on ImageNet, finding
the right sparsity and larger network design is crucial. Many studies explore diverse combinations to
balance sparsity and network size for outperforming dense models. However, these methods often
lack FLOP efficiency, requiring multiple iterations for optimal settings and hyperparameter tuning.
Therefore, we propose replacing dense transformations with FLOP-equivalent sparse transformations.
We denote these transformations as the Sparse Iso-FLOP Transformation (Sparse-IFT) family.

2.1 Sparse Iso-FLOP Transformations

Setup For clarity, we will explain our method for a fully connected neural network. In Appendix A.1,
we detail the straightforward extension of our method to convolutional layers. Let N denote
a L layered DNN parameterized by ΘN . Let ΘN ∈ {θ1, ..., θL} denote the parameters of the
DNN. The output of the l-th layer is defined as: zl = σ(fθl(zl−1)) for some activation function
σ (e.g., ReLU [64]) and feedforward function fθl . Specifically, let fθl(zl−1) = θTl zl−1, where
θl ∈ RDin×Dout , zl−1 ∈ RDin×B and B, Din, Dout denote the batch-size, input, and output
dimensionality of features respectively. The total FLOPs needed for fθl are given by B·Din·Dout.

In the standard setup, the feedforward function fθl computes the output features as a linear trans-
formation of input features. From a theoretical perspective, the feedforward function can make use
of arbitrary non-linear transformations. However, in practice, most transformations are expressed
as dense matrix multiplications due to widespread support on GPUs [68]. As stated before, we are
interested in improving the training efficiency of DNNs, by enhancing the representational capacity
of the feedforward function. Naively increasing the representational capacity by stacking more
layers [47], increasing width [95], mixture of experts [76], etc. increases the computational FLOPs.
In our work, we use unstructured sparsity in weight matrices and ensure that the FLOPs of the
transformation are the same as that of a dense feedforward function. Let Ψl denote the set of Sparse
Iso-FLOP Transformations (Sparse-IFT) for a particular layer l:

Ψl : {ψl(s), 0 ≤ s < 1, g(ψl) ≈ g(fθl)},

where ψl is a transformation, s represents the sparsity level, and g(·) returns the computational FLOPs.
Each transformation in this set satisfies the following properties: (1) the computational FLOPs of
the transformation ψl are same as that of dense transformation fθl , and (2) the transformation is
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parameterized by a single hyperparameter - the sparsity level. Since these transformations are Iso-
FLOP to the dense feedforward function, we can use them as drop-in replacements without affecting
the FLOPs of a layer. While there may be other FLOP-invariant transformations, in this work, we
detail four different members: Sparse Wide, Sparse Parallel, Sparse Factorized, and Sparse Doped.

2.2 Members of Sparse-IFT

Sparse Wide The sparse wide transformation augments the representational capacity of a layer by
increasing the number of output features while keeping s fraction of weights sparse. When using
this transformation, we widen the input and output features for all the L layers of the network with
the same widening factor, ksw, to avoid a mismatch in feature dimensionality across layers. Let
θswl ∈ Rksw·Din×ksw·Dout denote the transformation matrix, with s fraction of weights being sparse.
Since the fraction of non-sparse weights is given by 1− s, the FLOPs required by this transformation
are B·(ksw·Din)·(ksw·Dout)·(1 − s). Setting these equal to the FLOPs of the original dense fθl ,
we obtain the widening factor ksw =

√
1

(1−s) . If we set the sparsity s to 0, we obtain ksw as 1 and
recover the original dense feedforward function.

Sparse Parallel The sparse parallel transformation replaces the feedforward function with a sum of
ksp non-linear functions. Let θspl ∈ {θsp,1l , ..., θ

sp,ksp

l } denote the parameters of this transformation,
where θsp,jl ∈ RDin×Dout denotes the transformation matrix of jth function, where s fraction of
weights are sparse. The sparse parallel transformation in this case is ψsp

l =
∑ksp

j=1 σ((θ
sp,j
l )T zl),

where σ is a non linear function. In practice, ψsp
l is implemented as a layer with ksp parallel branches.

The computational FLOPs of this transformation is ksp·B·Din·Dout·(1− s). Setting these FLOPs
equal to FLOPs of fθ, we obtain ksp = 1

(1−s) . Note, at s = 0, the number of parallel branches ksp is
1. If we replace the non-linear function σ with Identity, we can recover the original dense feedforward
transformation.

Sparse Factorized The transformation matrix of the feedforward function fθl is denoted by
θl ∈ RDin×Dout . Multiple works have explored matrix factorization techniques to express the
transformation matrix θl as a product of two matrices θl = UV T , where U ∈ RDin×d, V ∈
RDout×d. Khodak et al. [39], Tai et al. [82] and Chen et al. [9] have explored low-rank factorization
(d << Dout) as a form of structured sparsity to improve training and inference efficiency, while Arora
et al. [1] and Guo et al. [26] have explored overparameterized factorizations for better generalization
and faster convergence. In contrast, we use factorization to augment the representational capacity
without decreasing or increasing the FLOPs. More precisely, let θsfl ∈ {Ul, Vl} denote the parameters
of this transformation, where Ul ∈ RDin×dsf , Vl ∈ Rdsf×Dout are sparse matrices with s fraction of
their weights being sparse. The functional transformation in this case is ψsf

l = V T
l σ(U

T
l zl). The

computational FLOPs of this transformation is dsf ·B·(Din +Dout)·(1− s). Setting these FLOPs
equal to FLOPs of fθl , we obtain dsf = Din·Dout

(Din+Dout)·(1−s) . Note, setting sparsity s = 0, we recover a
non-linear low-rank factorization with dense matrices.

Sparse Doped family of transformation is inspired by works [3, 5, 85, 87] which approximate a
dense matrix with a combination of low-rank factorization and sparse matrix. In our work, we replace
the feedforward function with low-rank factorization (with rank dsd) and an unstructured sparse
weight matrix (with sparsity s). Let Ul ∈ RDin×dsd , Vl ∈ Rdsd×Dout denote the low-rank matrices,
and θsdl ∈ RDin×Dout denote the matrix with unstructured sparsity. The functional transformation, in
this case, is given by ψsd

l = V T
l (UT

l zl) + σ((θsdl )T zl). The computational FLOPs associated with
this transformation are B·dsd·(Din +Dout) + (1− s)·B·Din·Dout. Setting these FLOPs equal to
FLOPs of fθl , we obtain dsd = s·Din·Dout

(Din+Dout)
. Note, as s→ 0 and dsd → 0, the low-rank component

of the transformation disappears, and we can recover the dense feedforward function as a special case
by setting σ to Identity.

2.3 Cardinality of Search Space

One of our hypotheses is that increasing the search space of the sparsity mask via Sparse-IFT
can make training more efficient. Results from past work support this hypothesis. Ramanujan
et al. [74] demonstrate that the odds of finding a lottery ticket in a randomly initialized network
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increase with the width of a network. Liu et al. [54] and Stosic and Stosic [80] show that increas-
ing the search space by increasing width or depth improves accuracy. In our work, we define
the cardinality of a search space as the number of weights a sparse training method can explore.
Table 1 characterizes the cardinality of search space for each member of the Sparse-IFT family.

Table 1: Cardinality of search space of
sparsity mask for different members of
the Sparse-IFT family.

Transformation Cardinality of
Search Space

Sparse Wide (ksw)
2·(Din·Dout)

Sparse Parallel ksp·(Din·Dout)
Sparse Factorized dsf ·(Din +Dout)

Sparse Doped Din·Dout

The search space for Sparse Wide, Sparse Parallel, and
Sparse Factorized transformations increase proportional
to the width scaling factor, number of parallel branches,
and size of intermediate hidden dimension, respectively.
Sparse Doped transformation splits its computational
FLOPs between low-rank factorization and unstructured
sparse weight matrix. The size of the unstructured weight
matrix is invariant to sparsity; thus cardinality of search
space for this transformation is constant.

3 Experiments

In this section, we demonstrate how transformations from the Sparse-IFT Family lead to improvements
across a variety of different tasks in the CV and NLP domains. First, in Section 3.2, we describe the
experimental setups and validate the design choices through multiple ablation studies on CIFAR-
100 [40], followed by results on ImageNet [41]. Then, in Section 3.5, we highlight the advantages
of pre-training with Sparse-IFT through gains on downstream tasks. Next, we present the benefits
of Sparse-IFT in the NLP domain by demonstrating results on GPT [2] in Section 3.6. Finally in
Section 4, we benchmark efficiency of Sparse-IFT using FLOPs, parameters and wall-clock time
as metrics. Unless stated otherwise, the results presented below are obtained by replacing all dense
layers with a given transformation from the Sparse-IFT family while only tuning the sparsity level.
All sparse models are trained using a uniform sparsity distribution (i.e., all layers have the same
sparsity level). We adopt the default hyperparameters from RigL [19] for dynamic sparsity. More
details about the setup can be found in Appendix B.2.

3.1 Implementation Details

Computer Vision We evaluate our method on CIFAR-100 and ImageNet using CNNs and hybrid
Vision Transformer (ViT) networks. We follow published training settings for CIFAR-100 [15]
and ImageNet [67]. For both datasets, we follow the standard evaluation procedures and report the
top-1 accuracy. Details for model architectures, datasets, and training hyperparameters are given in
Appendix B.2. All standard deviation was reported over 3 random seeds. For a few computationally
expensive experiments, we report results from a single run due to budget constraints.

Natural Language Processing We evaluate Sparse-IFT by training GPT-3 Small [2] from scratch
on the WikiText-103 [60] language modeling task, a commonly used NLP benchmark dataset. The
compute cost and resources for training quickly become prohibitive when transforming GPT models
with Sparse-IFT. Hence, we train our GPT models on the Cerebras CS-2 [45, 46] and leverage its
ability to accelerate training with unstructured sparsity. We provide more details about training-time
performance in Section 4. Currently, Cerebras CS-2’s specialized kernels support training with static
unstructured sparsity; therefore, results in this section are reported without DST methods.

3.2 Results and Ablations on CIFAR-100

In this section, we conduct various ablations to validate our design choices. Unless stated otherwise,
all experiments below are with ResNet-18 architecture on CIFAR-100.

Importance of Dynamic Sparsity All members of the Sparse-IFT family utilize transformations
with unstructured sparsity. This study investigates the importance of the sparse training method
when training different configurations of Sparse-IFT architectures. For this analysis, we focus on
the Sparse Wide IFT and evaluate it with transformations obtained with sparsity ∈ {50%, 75%,
90%} using three sparse training methods: static sparsity, SET [62] and RigL [19]. RigL and SET
are dynamic sparse training methods in which the sparsity mask evolves during training. The key
difference is that RigL updates the mask based on gradient information, whereas SET updates the
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mask randomly. Results of our ablation are documented in Table 2. Here, the following trends
can be observed: 1) the Sparse Wide IFT outperforms dense baselines across all operating points
(sparsity and sparse training method), 2) dynamic sparse training methods (RigL and SET) obtain
higher accuracies compared to training with static sparsity, and 3) gains with static sparsity plateau at
lower levels of sparsity, while dynamic sparse training methods gain accuracy at higher sparsities.

Table 2: Sparse Wide IFT using various sparse training methods
with ResNet-18 on CIFAR-100 across different levels of sparsity
(columns). Best accuracy for each sparse training method is high-
lighted in bold.

Dense Sparse Method 0.50 0.75 0.90

77.0 ± 0.2
Static 78.5 ± 0.3 78.3 ± 0.1 78.2 ± 0.3
SET 78.8 ± 0.1 79.2 ± 0.2 79.8 ± 0.2
RigL 79.1 ± 0.2 79.5 ± 0.1 80.1 ± 0.2

As mentioned in Section 2.3,
Sparse-IFT transformations
increase the search space ∝
sparsity. Dynamic sparse
training methods can explore
and exploit this increased
search space [80] and there-
fore outperform training with
static sparsity. RigL con-
sistently outperforms SET
among the two dynamic
sparse training methods we evaluated. Consequently, we adopt RigL as the sparse training method
for all the experiments below.

Importance of Using Non-Linear Activations Some members of the Sparse-IFT family are
inspired by recent works which overparameterize the feedforward function during training and fold it
back into a single dense matrix post training [16, 17, 18, 26]. Although these works show the benefits
of linear overparameterization, this comes at the cost of a significant increase in training FLOPs. In
contrast, while we also increase the representational capacity of the feedforward function, we do so
with an Iso-FLOP transformation. Since we remain Iso-FLOP to the original dense model, we do not
require post-training modifications to collapse weight matrices for inference efficiency. This uniquely
allows us to use non-linearities (e.g., ReLU) in members of the Sparse-IFT family to enhance the
representational capacity of the network further. We validate the importance of this design choice
by training ResNet-18 with Sparse Factorized IFT with and without non-linearities, and observe
significant accuracy gains across all sparsity levels when using non-linear activations. For example, at
90% Sparse Factorized, using non-linearity, we see a 1.8% gain in test accuracy over the ResNet-18
CIFAR-100 dense baseline, compared to a drop of 0.5% without it. These findings hold for other
members of the Sparse-IFT family as well (see Appendix B.1 for more details).

Table 3: Sparse-IFT families on CIFAR-100 with ResNet-18 model
across different levels of sparsity (columns). Best accuracy of each
transformation is highlighted in bold.

Dense Transformation 0.50 0.75 0.90

77.0 ± 0.2

Sparse Wide 79.1 ± 0.2 79.5 ± 0.1 80.1 ± 0.2
Sparse Factorized 77.8 ± 0.2 78.4 ± 0.5 78.9 ± 0.5

Sparse Parallel 77.9 ± 0.4 79.1 ± 0.2 78.2 ± 0.2
Sparse Doped 78.2 ± 0.1 77.8 ± 0.1 76.9 ± 0.2

Sparse-IFT ResNet-18
Here, we evaluate different
members of the Sparse-IFT
family on ResNet-18 and
CIFAR-100 across different
sparsity levels. Table 3
highlights the best accuracy
achieved by each member
of the Sparse-IFT family.
Compared to the accuracy
of the dense baseline (77%),
all Sparse-IFT members obtain significant accuracy improvements using the same FLOPs as
the dense model. We note that the Sparse Doped transformation is the only member of the
Sparse-IFT family which does not gain accuracy at higher levels of sparsity. We hypothesize that this
phenomenon occurs due to two reasons: (a) cardinality of the search space of the sparsity mask does
not increase with sparsity level (see Table 1), and (b) the number of active weights in the unstructured
matrix decreases ∝ sparsity. In Appendix B.3.1, we compare Sparse-IFT against other baselines
obtained with sparse training methods (e.g., RigL and SET) under the same training efficiency setup.
Specifically, we train ResNet-18 model on CIFAR-100 at sparsity levels ∈ {50%, 75%, 90%}, and
ensure that these runs use the same FLOPs as the dense baseline by extending the training iterations.
Our results show that Sparse-IFT outperforms these competitive baselines by a significant margin.

Sparse-IFT vs. Dense Overparametrization The success of Sparse-IFT members can be attributed
to efficient exploration of large search space with sparsity. Training this large search space in a
dense manner leads to consumption of more training FLOPs than the dense baseline, but provides

6



us with the upperbound (in terms of accuracy) for a sparse subnetwork. In this section, we will
characetrize this gap between the Sparse-IFT members and their dense counterpart. In Table 4,
we compare the sparse and dense counterparts of the two best performing Sparse-IFT members.

Table 4: Sparse-IFTs trained in a sparse and dense manner on
CIFAR-100 with ResNet-18 for different levels of sparsity.

Transformation Train
Method 0.50 0.75 0.90

Sparse Wide Sparse 79.1 ± 0.2 79.5 ± 0.1 80.1 ± 0.2
Dense 78.9 ± 0.2 79.7 ± 0.1 80.2 ± 0.3

Sparse Parallel Sparse 77.9 ± 0.4 79.1 ± 0.2 78.2 ± 0.2
Dense 78.1 ± 0.2 78.9 ± 0.1 78.1 ± 0.1

Both dense and sparse training
yield similar accuracy across
all sparsity levels, demon-
strating efficient exploration
and exploitation of over-
parameterized space without
the computational cost of dense
training. For instance, dense
runs (using Sparse-IFTs at
90% sparsity) require 10x more
FLOPs than sparse runs.

Table 5: Sparse Wide IFT with unstructured and
structured sparsity across different levels of sparsity
(columns) on CIFAR-100 with ResNet-18.

Dense Sparsity Pattern 0.50 0.75 0.90

77.0 ± 0.2 Unstructured 79.1 79.5 80.1
N:M Block Sparse 77.1 78.4 78.1

Unstructured vs. Structured Sparsity
We compare unstructured sparsity to struc-
tured sparsity with Sparse-IFT. In theory,
for a fixed number of non-zero elements in a
sparse mask, the use of unstructured sparsity
can search over all the possible variations of
the mask. However, since most hardware ac-
celerators are not able to accelerate compu-
tations with unstructured sparsity, multiple
works have investigated training with structured sparsity (e.g., low-rank and block-sparse matrices) to
obtain wall-clock speed-ups [6, 9, 13, 34, 39, 82]. We study structured sparsity by deriving Iso-FLOP
configurations using low-rank and block sparsity with Sparse Wide IFT. We use the method proposed
in Hubara et al. [34] to search N:M transposable sparsity, which can accelerate training on GPUs
with Tensor Cores. In our evaluation, the low-rank factorization results were worse than block
sparsity (see more details in Appendix B.3.3). Table 5 compares unstructured sparsity to block
sparsity. Although using Sparse-IFT with block sparse matrices lead to improvements over the dense
baseline, unstructured sparsity achieves the highest gains. This result can be explained by the fact that
block-sparse matrices have reduced mask diversity [34] compared to unstructured sparse matrices.

3.3 Results with Efficient Architectures Table 6: Sparse Wide IFT with various ef-
ficient architectures on CIFAR-100 across
different levels of sparsity (columns).

Dense 0.50 0.75

MobileNetV2 72.4 ± 0.2 73.4 73.7
MobileViT-S 73.5 ± 0.1 74.6 74.8

BotNet-50 79.8 ± 0.2 80.3 80.6

To further understand the robustness of Sparse-IFT
across different model families, we evaluate Sparse-
IFT on architectures that are optimized for efficient
inference (MobileNetV2 [75] and MobileViT [59])
and efficient training (BotNet [79]). We transform the
dense layers in these architectures with Sparse Wide
IFT and evaluate them at different sparsity levels. We
observe a noticeable increase in test accuracy across
all architectures (see Table 6). In addition, we demonstrate the robustness of the Sparse-IFT family
by also applying the Sparse Parallel transformation and show consistent improvement across all
architectures (see Appendix B.3.2). We evaluate the best performing architecture (BotNet-50) on
ImageNet (see Section 3.4). The details of the experimental setup can be found in Appendix B.2.

3.4 Results on ImageNet Table 7: Sparse-IFT on ImageNet. Best result for each transfor-
mation and architecture is highlighted in bold.

Model Dense Transformation Sparsity
0.50 0.75 0.90

ResNet-18 70.9 ± 0.1 Sparse Wide 72.7 73.8 74.4
Sparse Parallel 72.7 73.2 74.0

ResNet-34 74.2 ± 0.1 Sparse Wide 75.6 76.4 76.8

BotNet-50 77.5 ± 0.1 Sparse Wide 77.9 78.3 78.5

We take the best performing
Sparse-IFT transformations (i.e.,
Sparse Wide IFT and Sparse Par-
allel IFT) on CIFAR-100, and
evaluate them on ImageNet us-
ing ResNet-18. Both families of
Sparse-IFT obtain significantly
higher accuracy compared to the
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dense baseline (refer to Table 7). Note, Sparse Wide IFT ResNet-18 at 90% sparsity improves over
the dense baseline by 3.5%, and is able to match accuracy of dense ResNet-34 with 2× fewer training
FLOPs (see Figure 1). We take the best performing transformation (Sparse Wide IFT) and apply it to
ResNet-34 and BotNet-50. Increasing sparsity leads to a consistent increase in accuracy, indicating
improved training efficiency at higher sparsities. On BotNet-50, a hybrid ViT model, we see a 1%
improvement at 90% sparsity.

3.5 Transfer Learning with Sparse-IFT Table 8: Sparse-IFT variants of ResNet-18 as back-
bones for : (a) Object detection on MS COCO, (b)
Semantic segmentation on Cityscapes.

Metric Dense Sparsity
0.50 0.75 0.90

MS COCO
AP 29.3 31.3 32.8 34.5

AP50 46.2 49.0 51.0 53.5
AP75 30.9 33.0 34.8 36.5

CityScapes mIoU 76.7 77.9 78.9 79.1
mAcc 84.4 85.1 85.7 86.0

To show the effectiveness of pre-training our
Sparse-IFT classification backbones, we eval-
uate them on 1) object detection on MS COCO
2017 [48], and 2) semantic segmentation on
CityScapes [12]. For object detection, we
adopt the RetinaNet [50] framework from
the MMDetection open-source toolbox [7]
and report results in the standardized train-
ing setting. For semantic segmentation, we
utilize DeepLabV3+ [8] in the MMSegmena-
tion open-source toolbox [11]. We evaluate
ResNet-18 with Sparse Wide IFT (best-performing transformation on ImageNet). To ensure FLOP-
equivalent comparisons with the dense backbone, the Sparse-IFT backbones remain sparse during
fine-tuning. Appendix B.3.4 provides more details regarding the training setup. We summarize our
findings in Table 8, where using Sparse Wide IFT ResNet-18 backbone leads to significant accuracy
gains across all metrics on both downstream tasks.

3.6 Results on GPT End-to-End Training Table 9: Sparse-IFT for pre-training GPT-3
Small from scratch on WikiText-103 and re-
port the test perplexity (lower is better).

Dense 0.50 0.75

GPT-3 Small 20.8 ± 0.3 20.4 22.1

We train the Sparse Wide IFT GPT-3 Small models
at 50% and 75% sparsity levels, and compare against
the standard dense GPT-3 Small and GPT-3 Medium
models. Following Dao et al. [13], we train all models
from scratch on the WikiText-103 dataset and report
the average test perplexity (PPL) over 3 random seeds
in Table 9. We show that Sparse Wide IFT GPT-3 Small at 50% sparsity improves the perplexity by
0.4 over its dense counterpart. We also note that the Sparse Wide IFT GPT-3 Small model performs
comparable to a dense GPT-3 Medium (20.5 ± 0.2 PPL) while using 2.4x fewer training FLOPs. In
Appendix C.1, we provide details on the hyperparameters and how the total training FLOPs for the
models in Table 9 were calculated.

GPT Pre-training and Fine-tuning While not our main focus, it is worth noting that Sparse-IFT
can be used for fine-tuning NLP models. After sparse pre-training, the Sparse-IFT model can undergo
fine-tuning while remaining sparse or after densifying through techniques like SPDF [86]. Preliminary
fine-tuning experiments on BERT and GPT, with detailed results in Appendixx C.2.

4 Benchmarking Efficiency of Sparse-IFT

Model training efficiency can be characterized by FLOPs, parameters, or wall-clock time. While
wall-clock time is an ideal metric for benchmarking model configurations, it can be influenced
by external factors like hardware design, memory bandwidth, computational capabilities, kernel
support, and operation types. Hence, many studies opt to compare models using FLOPs or parameters
instead. In our work, we chose FLOPs as the metric for two reasons: (a) to be comparable to existing
sparsity work [19, 37, 58, 62], and (b) FLOPs correlate better with run-time compared to number of
parameters. Through various studies in Section 3, we have demonstrated improved training efficiency
of Sparse-IFT w.r.t training FLOPs. In Appendix D, we benchmark the efficiency of Sparse-IFT in
relation to model parameters and time. Our results show that Sparse-IFT variants perform well in
inference, offering higher accuracy for a fixed parameter budget. When supported by platforms with
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unstructured sparsity acceleration, Sparse-IFT also provides speed advantages during both training
and inference.

5 Related Work

Our work is similar to the body of work studying the role of overparameterization and sparsity for
training DNNs. The modeling capacity needed to learn a task is often unknown. Hence, we often
solve this by training overparameterized models to fully exploit the learning capability and then
compress them into a smaller subnetwork.

Overparameterization Nakkiran et al. [65] show that DNNs benefit from overparameterization.
Following this, there have been many works that leverage overparameterization by scaling the size of
models [25, 71] and augmenting existing DNNs to increase modeling capacity and the accuracy of
trained networks [4, 16, 18, 27, 53, 88]. These methods use linear parameterizations of the model,
making them highly inefficient to train, and are focused on improving inference throughput (reduced
latency). In contrast, our work is focused on improving the modeling capacity using sparse non-linear
parameterizations. Our approach enhances accuracy without increasing training FLOPs compared to
the baseline model, and while still maintaining equivalent inference FLOPs.

Sparse Training The Lottery Ticket Hypothesis [20, 21] shows that accurate sparse subnetworks
exist in overparameterized dense networks but require training a dense baseline to find. Other
approaches have proposed frameworks for identifying lottery tickets [58, 98] but still require a lot
of compute resources. Following this, various attempts have been made to find the optimal sparse
subnetwork in a single shot. These methods either try to find the subnetworks at initialization [14, 44,
84, 90] or dynamically during training [19, 37, 62, 72]. However, given a fixed model capacity, these
methods tradeoff accuracy relative to the dense baseline to save training FLOPs. Stosic and Stosic
[80] and Ramanujan et al. [74] increase the search space during sparse training to retain accuracy;
however, do not guarantee FLOPs savings. In contrast to these methods, our work introduces a set of
non-linear sparse transformations, which increase the representational capacity of the network. This
approach does not introduce a new sparse training algorithm, but instead improves the search space
of existing methods, leading to improved generalization while being efficient to train.

Iso-Parameter vs. Iso-FLOP Recent sparsity literature is focused on improving generalization at
high sparsity levels. Hence, layer-wise sparsity distributions such as the Erdös-Rényi-Kernel [19],
Ideal Gas Quota [10], and parameter leveling [24] are often used with sparse training to boost
accuracies. However, these works target the setting where the models being compared have a fixed
parameter budget (i.e., Iso-Parameter), which does not translate to similar training FLOPs to the
original dense model (especially in CNNs). As a result, training models with these distributions often
require different memory or computational resources per layer. Our approach does not focus on this
Iso-Parameter setting but instead adopts the uniform sparsity distribution (i.e., every layer gets the
same sparsity level), ensuring uniform FLOP reductions across the network. We achieve equivalent
computational FLOPs to a dense network through our Iso-FLOP transformations and sparsity.

6 Conclusion

We introduce a new family of Sparse Iso-FLOP Transformations (Sparse-IFT) to improve the training
efficiency of DNNs. These transformations can be used as drop-in replacements for dense layers and
increase the representational capacity while using sparsity to maintain training FLOPs. This increase
in capacity also translates to a larger search space allowing sparse training methods to explore better
and identify optimal sparse subnetworks. For the same computational cost as the original dense
model, Sparse-IFT improves the training efficiency across multiple model families in the CV and NLP
domains for various tasks. A limitation of our work is that most of the current hardware accelerators
do not support unstructured sparsity. We hope our results along with the promising benchmarks
(Section 4) on the Cerebras CS-2 and Neural Magic DeepSparse runtime will motivate the industry to
build better support for unstructured weight sparsity during training and inference.
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A Additional Methodology Details

A.1 Sparse-IFT for Convolutional Layers

In this section, we detail the straightforward extension of the Sparse-IFT family for convolutional
layers.

Sparse Wide Similar to the setup for fully connected layers, in the case of convolutional layers, we
widen the number of input and output channels.

Sparse Parallel Similar to the setup for fully connected layers, in the case of convolutional layers,
we can implement this transformation with the use of convolutional branches in parallel.

Sparse Factorized and Sparse Doped Let θl ∈ Rcin×cout×kh×kw represent the weight matrix of a
convolutional layer, where cin, cout, kh, kw denote the input channels, output channels, kernel height,
and kernel width, respectively. We apply low-rank or matrix factorization to the weight matrix by
first converting the 4D tensor into a 2D matrix with shape: (cin · kh · kw)× cout. In this setup, we
can express θl = UV T , where U ∈ Rcin·kh·kw×d, V ∈ Rcout×d. In this factorization, U learns a
lower-dimensional set of features and is implemented as a convolutional layer with d output channels
and kh × kw filter. V matrix expands this low-dimensional set of features and is implemented as a
convolutional layer with 1× 1 filter.

A.1.1 Sparse-IFT for Depthwise Convolution Layers

For a normal convolution layer, all inputs are convolved to all outputs. However, for depthwise
convolutions, each input channel is convolved with its own set of filters. Let θl ∈ Rcin×cout×kh×kw

represent the weight matrix of a normal convolution layer, where cin, cout, kh, kw denote the input
channels, output channels, kernel height, and kernel width, respectively. An equivalent depthwise
convolution layer will have weights θdw,l ∈ R1×cout×kh×kw .

Sparse Wide A Sparse Wide depthwise convolution will have weights θswdw,l ∈ R1×ksw·cout×kh×kw .
Since the fraction of non-sparse weights is given by 1− s, the FLOPs required by this transformation
are B·(ksw·cout)·kh·kw·(1 − s). Setting these equal to the FLOPs of the original dense θdw,l, we
obtain the widening factor ksw = 1

(1−s) . In this case, we do not scale the input channels as it converts
the depthwise convolution to a grouped convolution without an equivalent scaling in the number of
groups.

Other Sparse-IFT Transformations The Sparse Wide IFT generally changes a layer’s input and
output channels, subsequently scaling the following layers in a CNN. However, the other Sparse-IFT
transforms (Sparse Parallel, Sparse Factorized, and Sparse Doped) do not modify a convolution
layer’s input or output channels (as seen in Figure 2). This allows for fine-grained control of what
layers to apply the Sparse-IFT transformations. Since depthwise convolutions are an extreme form
of structured sparsity, where some filters interact with only specific input channels, we opt not
to sparsify them when using the other Sparse-IFT transformations and leave the layer unchanged
while still maintaining FLOPs equivalent to the dense baseline. Note that the different convolution
layers surrounding the depthwise convolution are still transformed with Sparse-IFT to increase their
representational capacity.

B Computer Vision: Experimental Settings

B.1 Importance of Non-linearity

We use BatchNorm [35] followed by ReLU [64] as a non-linearity. We provide an extended set of
empirical results in Table 10 to help validate the importance of training with and without non-linearity
by training configurations of the Sparse Parallel, Factorized, and Doped IFT families at different
levels of sparsity. The results without non-linear activation functions are often worse than the dense
accuracy (77%) across all Sparse-IFT family transformations. We omit Sparse Wide in Table 10
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because here we increase the number of channels in the convolutional layers while maintaining the
existing architecture.

Table 10: Evaluation on the importance of utilizing the non-linear activation across different members
of Sparse-IFT with ResNet-18 on CIFAR100 across different values of sparsity (columns). Non-linear
activations enhance the representational capacity of Sparse-IFT, leading to higher accuracy. All
reported results are the average over 3 random seeds.

Transformation Non-linear activation 0.50 0.75 0.90

Sparse Factorized ✗ 75.9 ± 0.3 76.6 ± 0.4 76.5 ± 0.4
✓ 77.8 ± 0.4 78.4 ± 0.5 78.9 ± 0.5

Sparse Parallel ✗ 77.1 ± 0.1 77.2 ± 0.2 77.6 ± 0.1
✓ 77.9 ± 0.2 79.1 ± 0.2 78.2 ± 0.2

Sparse Doped ✗ 77.3 ± 0.2 77.1 ± 0.1 76.5 ± 0.2
✓ 78.2 ± 0.1 77.8 ± 0.1 76.9 ± 0.2

B.2 Computer Vision: Pre-Training Settings

CIFAR-100 Our implementation of CIFAR-100 follows the setup from [15] for ResNets. We train
the models for 200 epochs with batches of 128 using SGD, Nesterov momentum of 0.9, and weight-
decay of 5×10−4. The learning rate is initially set to 0.1 and is scheduled to decay to decrease by a
factor of 5x after each of the 60th, 120th, and 160th epochs. Following recent advances in improving
ResNets, we initialize the network with Kaiming He initialization [30], zero-init residuals [31],
and disable weight-decay in biases and BatchNorm [35] layers. For CIFAR-100 experiments with
MobileNetV2, MobileViT-S, and BotNet-50, we follow the same training setup used for ResNet, but
the learning rate is scheduled via cosine annealing.

ImageNet Our implementation of ImageNet follows the standard setup from [42, 78]. The image
is resized with its shorter side randomly sampled in [256, 480] for scale augmentation [78]. A 224
× 224 crop is randomly sampled from an image or its horizontal flop, and then normalized. For
evaluation, the image is first resized to 256 × 256, followed by a 224 × 224 center crop, and then
normalized. Following recent advances in improving ResNets, we initialize the network with Kaiming
He initialization [30] and zero-init residuals [31].

For ResNets, we replicate the settings recommended by Nvidia [67], which uses the SGD optimizer
with a momentum of 0.875 and weight decay of 3.0517578125×10−5. We disable weight-decay
for biases and BatchNorm layers. The model is trained with label smoothing [81] of 0.1 and mixed
precision [61] for the standard 90 epochs using a cosine-decay learning rate schedule with an initial
learning rate of 0.256 for a batch size of 256. Srinivas et al. [79] follow the same setup as ResNet for
training BotNet-50 on ImageNet, therefore we maintain the same hyperparameter settings as Nvidia
[67] for our BotNet-50 ImageNet experiments.

Sparsity Setup For enabling the Sparse-IFT transformations, we use the RigL [19] algorithm in its
default hyperparameter settings (α = 0.3,∆T = 100), with the drop-fraction (α) annealed using a
cosine decay schedule for 75% of the training run. We keep the first and last layers (input convolution
and output linear layer) dense to prevent a significant degradation in model quality during pre-training,
which is standard practice. We account for these additional dense FLOPs by increasing the sparsity
in the remaining layers, similar to Gale et al. [22] and Liu et al. [54].

B.3 Computer Vision

B.3.1 Sparse-IFT vs. Extended Sparse Training Schedules

We provide a direct comparison with sparse training methods (e.g., RigL and SET) in the Iso-FLOP
setting (i.e., training with a longer schedule) to demonstrate the significance of our results with
respect to this standard sparse baselines. As shown in the Table 11, Sparse-IFTs outperform dynamic
sparse training methods by a significant margin across all levels of sparsity. Note, at higher levels of
sparsity (e.g., 90%), sparse training methods obtain worse accuracy compared to the FLOP equivalent
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Table 11: Results with ResNet-18 on CIFAR-100 across different values of sparsity (columns). Best
accuracy for each sparse training method is highlighted in bold. The original dense ResNet-18 model
obtains an accuracy of 77.0±0.2. All reported results are over 3 random seeds.

Dense Transformation Sparse Training Method Epochs 0.50 0.75 0.90

77.0 ± 0.2

Sparse Wide SET 200 · 1
1−s

78.7 ± 0.2 78.4 ± 0.1 76.8 ± 0.1
Sparse Wide RigL 200 · 1

1−s
78.9 ± 0.1 78.8 ± 0.1 76.4 ± 0.2

Sparse Parallel RigL 200 79.1 ± 0.2 79.5 ± 0.1 80.1 ± 0.2

dense baseline. In contrast, with Sparse-IFT, we observe higher accuracy across all levels of sparsity
evaluated.

B.3.2 Sparse-IFT on Efficient Computer Vision Architectures

Here, we provide an extended set of results on MobileNetV2, MobileViT-S, and BotNet-50 on
CIFAR-100. In particular, we enable Sparse Wide and Sparse Parallel IFT at 50% and 75% sparsity
values (see Table 12).

Table 12: Evaluation of Sparse Wide and Sparse Parallel IFT with various compute efficient archi-
tectures on CIFAR-100 across different values of sparsity (columns). Using Sparse Parallel IFT, all
architectures outperform the dense baseline by a significant margin.

Dense Transformation 0.50 0.75

MobileNetV2 72.4 ± 0.2 Sparse Wide 73.4 73.7
Sparse Parallel 72.9 73.3

MobileViT-S 73.5 ± 0.1 Sparse Wide 74.6 74.8
Sparse Parallel 73.7 74.4

BotNet-50 79.8 ± 0.2 Sparse Wide 80.3 80.6
Sparse Parallel 79.7 80.5

B.3.3 Evaluation of Sparse-IFT with Structured Sparsity

Block Sparsity To derive Iso-FLOP configurations with block sparsity, we reuse the analysis done
previously with unstructured sparsity (see Section 2.2) and express the width scaling as a function of
sparsity. However, we will search for a block sparse mask during training instead of an unstructured
sparsity mask. We use the method proposed by Hubara et al. [34] to search N:M transposable sparsity,
which can accelerate both the forward and backward pass during training on NVIDIA GPUs with
Tensor Cores. We use 4:8-T, 2:8-T, and 1:8-T block patterns to obtain 50%, 75%, and 87.5% sparsity,
respectively. Note the 1:8-T block is the closest approximation to a 90% sparsity pattern attainable
with a block size of 8. We also set up and experimented using the method proposed by Jiang et al.
[38] to train with fine-grained sparse block structures dynamically. However, the algorithm uses
agglomerative clustering which led to a much slower runtime and quickly ran out of memory even at
50% sparsity using the Sparse Wide IFT on a single Nvidia V100 (16 GB).

Low Rank Let klr be the factor with which we widen all layers’ input and output dimensions for
low-rank factorization. We replace all dense layers with low-rank factorization, i.e. θlrl = UlV

T
l ,

where Ul ∈ R(klr.Din)×d and Vl ∈ R(klr.Dout)×d. Given a widening factor and equating the FLOPs
of this transformation to that of a dense transformation fθ, we obtain the following expression for
rank d: Din.Dout.klr

(Din+Dout
. We evaluate this factorization across different values of width-scaling klr in

Table 13.

B.3.4 Evaluation on downstream tasks

COCO Object Detection

This dataset contains 118K training, 5K validation (minival), and 20K test-dev images. We adopt
the standard single-scale training setting [49] where there is no additional data augmentation beyond
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Table 13: Comparison of structured sparse and unstructured sparse methods on CIFAR-100 test
accuracy on ResNet-18.

Width Scaling Factor
Transformation Sparsity Type Sparsity 1x 1.41x 2x 3.16x

Low Rank, Linear Structured 0% 74.1 74.3 74.3 73.4
Low Rank, Non-Linear Structured 0% 76.8 76.5 76.0 75.3

Sparse Wide

N:M Block Sparse
[34]

4:8-T 77.1
2:8-T 78.4
1:8-T 78.1

Unstructured Sparse
[19]

50% 79.1
75% 79.5
90% 80.1

standard horizontal flipping. For training and testing, the input images are resized so that the shorter
edge is 800 pixels [49]. The model is trained with a batch size of 16, using the SGD optimizer with a
momentum of 0.9 and weight decay of 1×10−4. We follow the standard 1x schedule (12 epochs)
using a step learning rate schedule, with a 10x decrease at epochs 8 and 11, an initial learning rate
warmup of 500 steps starting from a learning rate of 2×10−5, and a peak learning rate of 0.01.

Table 14: Object detection results on COCO minival in the RetinaNet framework. Sparse Wide IFT
configurations of RetinaNet outperform the dense baseline by a large margin on all metrics while
using similar FLOPs.

Backbone AP AP50 AP75 APS APM APL

Dense 29.3 46.2 30.9 14.7 31.5 39.6
Sparse Wide (50%) 31.3 49.0 33.0 16.6 34.0 42.0
Sparse Wide (75%) 32.8 51.0 34.8 17.3 35.8 43.3
Sparse Wide (90%) 34.5 53.5 36.5 18.6 37.6 45.3

CityScapes Semantic Segmenation

Setup We follow the same training protocol as [97], where the data is augmented by random crop-
ping (from 1024 × 2048 to 512 × 1024), random scaling in the range [0.5, 2], and random horizontal
flipping. The model is trained with a batch size of 16, using the SGD optimizer with a momentum of
0.9 and weight decay of 5×10−4. We follow the 80K iterations setup from MMSegmentation with
an initial learning rate of 0.01 annealed using a poly learning rate schedule to a minimum of 1×10−4.
Similar to most setups that tune hyperparameters [55, 91, 97] for reporting the best results, we tune
the learning rate for all our models. All our results are reported using a learning rate of 0.03 for the
sparse backbones and 0.01 for the dense baseline.

Table 15: Semantic segmentation results on the Cityscapes val set using DeepLabV3+. Sparse Wide
IFT configurations ResNet-18 backbones outperform the dense baseline on all metrics while using
similar FLOPs.

Backbone mIoU mAcc

Dense 76.72 84.40
Sparse Wide (50%) 77.90 85.12
Sparse Wide (75%) 78.92 85.68
Sparse Wide (90%) 79.10 86.01

C Natural Language Processing: Experimental Settings

C.1 Details for GPT End-to-End Training

Our end-to-end training setup for GPT-3 on WikiText-103 follows a similar procedure to Dao et al.
[13]. We use a batch size of 512 and train with the AdamW optimizer for 100 epochs. Also, we use a
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learning rate warmup for 10 epochs and a weight decay of 0.1. To discover good hyperparameters,
we perform a grid search to discover an appropriate learning rate among {8e-3, 6e-3, 5.4e-3, 1.8e-3,
6e-4, 2e-4, 6e-5} that led to the best perplexity for a given compute budget on the validation set. In
Table 16, we outline the architecture configurations for the original dense model and its Sparse Wide
IFT 50% and 75% variants.

Table 16: Sizes and architecture definitions of the dense GPT-3 Small model and its Sparse Wide IFT
variants.

Model Transformation Sparsity nlayers dmodel dff nheads dhead

GPT-3 Small Dense 0% 12 768 3072 12 64
GPT-3 Small Sparse Wide 50% 12 1092 4344 12 64
GPT-3 Small Sparse Wide 75% 12 1536 6144 12 64

WikiText-103 End-to-End Training Results We highlight that in Table 17, the Sparse Wide IFT
GPT-3 Small at 50% sparsity attains a better perplexity on WikiText-103 while using 2.4x fewer
training FLOPs than the GPT-3 Medium dense model. In this setup, using Sparse Wide transformation
does not change the FLOP of the dense layer, but this leads to a slight increase in the attention FLOPs.
This explains the 1.17x increase in FLOPs between the GPT-3 Small Sparse Wide at 50% sparsity
and the dense GPT-3 Small model. Note, out of all the Sparse-IFT transformations, this increase only
occurs in the Sparse Wide IFT.

Table 17: Details on the total training FLOPs for each GPT-3 model tested. We note that the reported
FLOPs per sequence (seq) include both forward and backward passes. The reported perplexity (lower
is better) is on the WikiText-103 test set over 3 random seeds.

Model Transformation Sparsity Total
Seqs

Total FLOPs/
Seq

Total
FLOPs

Total
exaFLOPs Perplexity

GPT-3 Small Dense 0% 2.28e6 8.763e11 2.0011e18 2.00 20.8 ± 0.3
GPT-3 Small Sparse Wide 50% 2.28e6 1.029e12 2.3498e18 2.35 20.4 ± 0.2

GPT-3 Medium Dense 0% 2.28e6 2.4845e12 5.6734e18 5.67 20.5 ± 0.2

C.2 Details for Sparse Pre-training and Dense Fine-tuning [86]

We provide an extended set of results that showcase the added benefit of using Sparse-IFT transforma-
tions. Here, we apply the Sparse Pre-training and Dense Fine-tuning (SPDF) framework introduced
by Thangarasa et al. [86]. In this setup, all models are pre-trained under a similar FLOP budget.
However, during the fine-tuning stage, Sparse-IFT models have extra representational capacity which
can be enabled by allowing the zeroed weights to learn (i.e., dense fine-tuning). Even though the
fine-tuning FLOPs are more than the original dense model, we leverage Sparse-IFT method’s extra
capacity to obtain accuracy gains on the downstream task. To ensure a fair baseline, we also compare
dense fine-tuning to sparse fine-tuning (i.e., pre-trained model remains as-is) similar to Thangarasa
et al. [86].

C.2.1 SPDF on BERT

Experimental Setup We train BERT models using the open-source LAMB [93] implementation
provided by Nvidia [66]. In this setup, BERT is pre-trained on the BookCorpus [99] and Wikipedia
datasets in two phases. In the first phase, models are trained for 82% of total iterations with a
sequence length of 128. In the second phase, models are trained for the remaining 18% of iterations
with sequence length 512. We use a batch size of 8192 and 4096 in phase 1 and phase 2, respectively.
Table 18 shows details of the size and architecture of the BERT Small model. For finetuning models
on SQuADv1.1 [73], we train for two epochs with AdamW optimizer and use a grid search to tune
the learning rate and batch size.

SPDF on SQuADv1.1 Results We evaluate BERT Small with Sparse Wide, Sparse Parallel, and
Sparse Factorized members of the Sparse-IFT family. All transformations, except Sparse Parallel,
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Table 18: Size and architecture of the BERT Small model, which is trained using the setup from Nvidia
[66]

Model nparams nlayers dmodel nheads dhead

BERT Small 29.1M 4 512 8 64

perform comparably to the dense baseline on SQuAD. Unlike CV architectures, BERT initializes
the layers with a normal distribution, which has an adverse effect when layers undergo shape
transformations (e.g., changes in depth [96], or width [92]). In our initial experiments, we found
changing the initialization of BERT enables other families to outperform the dense baseline. In
addition to initialization, BERT training has over six hyperparameters. We leave optimizing and
analyzing the effect of these hyperparameters on Sparse-IFT for future work and restrict our current
scope to demonstrating gains without tuning any hyperparameters. Using the Sparse Parallel IFT
with 50% sparsity leads to a 0.7% improvement in the exact match (EM) accuracy over the dense
baseline (see Table 19).

Table 19: Evaluation of Sparse Parallel IFT for pre-training BERT Small. We report EM (higher is
better) obtained by sparse fine-tuning and dense fine-tuning BERT models on SQuADv1.1, respec-
tively.

Dense Transformation Fine-Tuning Method 0.50 0.75

70.6 Sparse Parallel Sparse 70.7 69.9
Dense 71.3 70.8

C.2.2 SPDF on GPT

Pre-training Experimental Setup Here, we pre-train the models on the Pile [23] dataset. To train
all GPT models, we use AdamW optimizer [57] with β1 = 0.9, β2 = 0.999 and ϵ = 10−8. The
global norm is clipped at 1.0, and a weight decay of 0.1 is used. There is a learning rate warmup over
the first 375M tokens, followed by a cosine decay to 10% of the peak learning rate. We follow the
recently published Chinchilla [33] recommendations for obtaining loss-optimal pre-trained baseline
configurations of models. The context window size is 2048 following [2]. Table 20 shows a detailed
breakdown of the model architectures, learning rate, and training settings. In Table 16, we outline the
architecture configurations for Sparse Wide IFT 50% and 75% variants.

Table 20: Size, architecture, and learning hyperparameters (batch size and learning rate) of the GPT-3
Small model, which is trained using Chinchilla optimal configurations (≈ 20 tokens per parameter)

Model nparams nlayers dmodel nheads dhead Batch Size Learning Rate Training Tokens

GPT-3 Small 125M 12 768 12 64 256 6×10−4 2.5B

Fine-tuning Experimental Setup We finetune the Sparse Wide IFT variants of GPT-3 Small on
the WikiText-103 [60] dataset following the setup presented in [71]. We finetune for ten epochs
and perform early stopping once the models overfit. We performed a grid search to discover an
appropriate learning rate that led to the best perplexity for a given compute budget. More specifically,
on the dense baseline and Sparse Wide IFT variants, we use a batch size of 32 and select the best
learning rate among {5e-3, 3e-3, 1e-3, 3e-4, 1e-4, 3e-5, 1e-5} on the validation set.

In Tables 16, 18, and 20, nparams is the total number of trainable parameters, nlayers is the number
of decoder layers, and dmodel is the base size of the model. The feedforward bottleneck is four times
the base size, i.e., dff = 4× dmodel. Finally, nheads is the number of attention heads, and dhead is
the dimension of each attention head.

SPDF on WikiText-103 Results Here, we pre-train a GPT-3 Small architecture with Sparse Wide
IFTs at 50% and 75% sparsity. Post pre-training, we finetune our models on WikiText-103. The
GPT-3 Small 75% Sparse Wide model reduces the perplexity (PPL) by a noticeable 1.3 points
compared to dense (refer to Table 21).
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Table 21: Evaluation of Sparse Wide IFT for pre-training GPT-3 Small. We report perplexity
(lower is better) obtained by sparse fine-tuning and dense fine-tuning GPT models on Wikitext-103,
respectively.

Dense Transformation Fine-Tuning Method 0.50 0.75

15.9 Sparse Wide Sparse 15.6 16.0
Dense 15.1 14.6

D Benchmarking Efficiency w.r.t Model Parameters and Wall-clock

In this section we evaluate the training and inference efficiency of Sparse-IFT with respect to number
of model parameters and wall-clock time.

D.1 Model Parameters

In this section, we evaluate Sparse-IFT variants using test-accuracy w.r.t model parameters as our
metric. Figure 3 compares the performance of Sparse Wide IFT variants of ResNet on ImageNet
dataset. As shown in the figure, Sparse Wide IFT variants obtain significantly higher accuracy
compared to the dense counterparts. This result indicates that Sparse-IFT variants are also efficient
for inference setup, as they obtain higher accuracy for a fixed amount of parameter/storage budget
compared to dense models.
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Figure 3: Accuracy vs number of parameters for different variants of ResNet on ImageNet. Sparse-
IFT provides significant accuracy gains across different models and sparsity levels. In particular, the
best Sparse-IFT variants of ResNet-18 and ResNet-34 achieve 3.5% and 2.7% improvements over
their dense baselines, respectively.

D.2 Wall-clock Time

Results presented in Section 3 validate our hypothesis, i.e., training DNNs with dense matrices
is FLOP inefficient. Replacing dense layers with Sparse-IFT increases the training efficiency by
providing significantly higher accuracy using the same amount of training FLOPS. This result is
significant from a theoretical perspective but does not translate to direct practical value on hardware
that can not accelerate unstructured sparsity (e.g., Nvidia GPUs, Google TPUs). However, there has
recently been a renewed interest in hardware software co-design for accelerating unstructured sparsity.
Here, we benchmark Sparse-IFT on these platforms to demonstrate its practical value. We hope
these results motivate the broader machine learning community to explore and exploit the benefits of
unstructured sparsity for training and inference.

Inference Setup We use Neural Magic’s DeepSparse [36, 43] tool for benchmarking Sparse-IFT
variants. The benchmarking is conducted on G4dn instances available on the AWS cloud. These
instances support the AVX-512 instruction set, which is used by the DeepSparse inference runtime
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Figure 4: Benchmarking (left) inference on Neural Magic’s DeepSparse runtime and (right) training
acceleration with unstructured sparsity on the Cerebras CS-2. In both setups, we measure the relative
increase in latency or training speed for Sparse-IFT variants against the dense model.

to accelerate unstructured sparsity. We benchmark different configurations of the Sparse Wide
ResNet-18 model with sparsity ∈ {50%, 75%, 90%} for batched inference on ImageNet. We report
runtime for batch-inference of 64 images at 224 × 224 resolution.

Training Setup We evaluate the training efficiency of Sparse-IFT on the Cerebras CS-2 which
supports and accelerates training with unstructured sparsity (both forward and backward passes). We
benchmark the training speed measured in seconds/iteration. Note that the overall FLOPs of models
in the GPT family are comprised of matrix multiplication FLOPs and attention FLOPs. Attention
FLOPs (i.e., spent in multi-head attention) scale quadratically with sequence length and are invariant
to weight sparsity. To demonstrate the efficacy of sparse kernels for unstructured weight sparsity,
we report our results for dense and Sparse Wide variants of the GPT-3 1.3B model with a sequence
length of 256 and batch size of 528. We benchmark different configurations of Sparse Wide GPT-3
1.3B with sparsity ∈ {50%, 75%, 90%} and report seconds/ iteration.

Figure 4 shows the result of benchmarking inference and training of Sparse-IFT Sparse Wide family.
In both setups, we measure the relative increase in latency or training speed for Sparse-IFT variants
against the dense model. Note that configurations of Sparse-IFT at different values of sparsity do not
incur a significant change in the FLOPs compared to the dense model. On ideal hardware, FLOPs
should translate directly to wall clock time, and hence, the inference latency or training time for
all configurations of Sparse-IFT should be the same as that of the dense model (dotted black line).
Conversely, when hardware does not support unstructured sparsity, the latency or training time of
Sparse-IFT variants increases with sparsity (blue line). Our results lie between these two spectrums
(green line). Using Neural Magic’s sparse inference runtime, we observe a significant reduction in
inference latency, bringing down the relative increase in latency from 19.5x to 3.5x. Similiarly, in the
case of training on the Cerebras CS-2, we observe a significant reduction in training-time, bringing
down the relative increase from 10.6x to 2.8x.
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