
Efficient and Approximate Per-Example Gradient
Norms for Gradient Noise Scale

Anonymous Author(s)
Affiliation
Address
email

Abstract

The gradient noise scale is valuable to compute because it provides a suggestion1

for a compute efficient batch size when training a deep learning model. However,2

computing it can be awkward or expensive depending on the approach taken due to3

difficulty obtaining small batch gradient norm estimates. “Efficient” per-example4

gradient norms provide accurate small batch gradient norms but are inefficient5

in transformer or convolutional models. By assuming activations are normally6

distributed, we compute an approximate per-example gradient norm that tracks the7

true per-example gradient norm in practical settings. Using this approximation,8

we construct a Scaled Output Gradient Noise Scale (SOGNS) that is generally9

applicable at negligible cost and provides additional feedback to the practitioner10

during training.11

1 Introduction12

Gradient Noise Scale (GNS) correlates with the “critical batch size”, which prescribes a batch size at13

which the model will require “twice as many steps as an optimally data-efficient (small-batch) run14

would take, and twice as many optimization steps as an optimally time-efficient (large-batch) run15

would take” [McCandlish et al., 2018]. For this reason, the batch size prescribed by GNS has been16

demonstrated to be useful while training GPT3 [Brown et al., 2020].17

Computing the GNS requires gradent norms from small and large batches (described in Section 2).18

However, in settings where we desire high performance compute, batch sizes typically need to be19

large, making it difficult or costly to sample small batch gradients. Goodfellow [2015] introduces20

a trick to access per-example gradient norms efficiently, but this trick cannot be applied in settings21

with tensor rank larger than 2. In particular, transformer language models have rank-3 tensor with22

batch, sequence and hidden dimensions. To address this problem, we construct an approximation23

that assumes normally distributed activations at layer inputs, which allows us to access per-example24

norms efficiently (described in Section 3.1).25

2 Background26

McCandlish et al. [2018] suggest using the “simple” GNS, Bsimple
1, as a metric to inform the27

practitioner while training a model,28

Bsimple =
tr(Σ)

GTG

1This approximation is denoted as “simple” because it assumes that the Hessian is diagonal in the Taylor
expansion of the loss.

Submitted to the Workshop on Advancing Neural Network Training at 37th Conference on Neural Information
Processing Systems (WANT@NeurIPS 2023). Do not distribute.

Figure 1: The variance of the GNS estimator for different Bbig (left) and Bsmall (right) sizes. Bbig = l
and Bsmall = s in legends.

where G are the gradients and Σ is their associated covariance matrix. To compute Bsimple McCandlish29

et al. [2018] further define the unbiased estimators S and |G|2 shown in Equations 1 and 2, where30

Bbig and Bsmall are the batch sizes used to compute the gradients.31

|G|2 :=
1

Bbig −Bsmall

(
Bbig|GBbig |2 −Bsmall|GBsmall |2

)
≈ GTG (1)

S :=
1

1/Bsmall − 1/Bbig

(
|GBsmall |2 − |GBbig |2

)
≈ tr(Σ). (2)

We can easily compute |GBbig | using the accumulated gradients immediately after the backward pass.32

However, the challenge in computing |GBsmall | is that it requires the gradients for a batch size that33

is smaller than the batch size used for the optimizer step. McCandlish et al. [2018] propose using34

the gradients communicated between Distributed Data Parallel (DDP) nodes but this means that the35

variance of the resulting GNS estimate is tied to that DDP configuration. A taxonomy of the options36

for computing |GBsmall | is presented in Appendix A.37

As the estimate of the small batch gradient norm may be the mean over samples within the minibatch,38

in accordance with the law of large numbers, the variance of the estimate decreases with the number39

of observations of the gradient norm. As shown in Figure 1, this implies the small batch size should40

be as small as possible to obtain an estimate of |GBsmall |, and thus the GNS, with minimal variance.41

Further discussion of this result may be found in Appendix B and code in Appendix B.1.42

3 Efficient Per-example Norms43

Goodfellow [2015] proposes a trick to compute gradient norms for individual examples in a minibatch,44

which would provide the minimum variance estimate of the GNS as described in Section 2. He45

observes that the squared norm of the gradient is a sum of elements in an outer product that can be46

factored into two smaller sums on the input vectors, eliminating the need to calculate the full outer47

product. It may be stated as follows using Einstein and Lagrange notation,48

n2
b = (w′)2bik = xbixbiy

′
bky

′
bk,

where x are the activations prior to a linear layer, y′ are the gradients of the loss with respect to the49

outputs of the linear layer and w′ are the gradients of the loss with respect to the weights of the linear50

layer. Further explanation of this notation may be found in Appendix C.51

For networks of only linear layers acting on 2D inputs, this trick is sufficient to provide accurate52

GNS estimates. However, for networks with convolutional or 3D inputs to linear layers, such53

as transformers, this trick is no longer efficient. For three dimensions, X ∈ RB×T×I and Y ∈54

RB×T×K [Li et al., 2022],55

n2
b = (w′)2bik = (

∑
t

xbtiy
′
btk)

2 = xbtiy
′
btkxbuiy

′
buk

2

has O(T 2) complexity in the sequence length T . In these cases computing the norms explicitly, as56

the per-example gradient trick avoids, is more efficient. More details on this case are provided in57

Appendix C.1.58

3.1 Proposed Additional Approximation59

Assuming all entries of X are IID Gaussian with a batch-dependent standard deviation σb and mean60

zero allows us to compute the following expectation in closed form:61

E[
∑
i

xbixbi] =
∑
i

E[xbixbi] =
∑
i

σ2(xbi) = Iσ2(xbi).

Appying this in the 3D case,62

E[n2
b] = E [y′btky

′
bukxbtixbui] = y′btky

′
bukE [xbtixbui] =

∑
t,k

y′btky
′
buk

∑
i

σ2
b = Iσ2

b

∑
t,k

y′btky
′
buk

and we know σ2
b = 1

TI

∑
t,i xbtixbti in line with our assumptions above, assuming xbti is zero-mean.63

Factorizing the quadratic in the t, u dimension produces64

E[n2
b] = Iσ2

b

∑
k

(∑
t

y′btk

)2

.

In practice, this says we can approximate nb in the 3D case by summing the activations over the T65

dimension, squaring the result, and multiplying by the squared norm of X, divided by T :66

n2
b ≈ η2b = Iσ2

b

∑
k

(∑
t

y′btk

)2

=

 1

T

∑
t,i

xbtixbti

∑
k

(∑
t

y′btk

)2

and we can see that this is equal to the exact per-example gradient when T = 1:67

n2
b ≈ η2b = Iσ2

b

∑
k

(∑
t

y′btk

)2

= I
1

I

∑
i

xbixbi

∑
k

(y′bk)
2
= xbixbiy

′
bky

′
bk

Experiments in Section 4, along with simulations in Appendix D, confirm that this approximation is68

accurate. This approximation may also be extended to apply to |GBbig | as described in Appendix E69

but this observation is unnecessary for the results presented here, as we assume the exact |GBbig | is70

easy to access.71

Substituting η2b into Equations 1 and 2 yields BSOsimple, the Scaled Output Gradient Noise Scale72

(SOGNS). The analogous metric using the exact per-example norm is BPEPsimple the Per-Example73

Parameter Gradient Noise Scale (PEPGNS).74

4 Experiments75

4.1 Approximate Per-Example Gradient Noise Scale76

We investigate how well SOGNS from Section 3.1 correlates with the observed GNS by training a77

1M parameter Convolutional Neural Network (CNN) on MNIST. Figure 2a shows the overall fit of78

SOGNS to PEPGNS at all points throughout training for only the convolutional layers (the remaining79

linear layers only process 2D tensors so the estimate is exact). Throughout training, the relationship80

between the SOGNS and PEPGNS is extremely regular over several orders of magnitude.81

We also demonstrate the overall performance of the approximation by comparing the relationship82

between observed GNS and training loss. In Figure 2b, we replicate McCandlish et al. [2018] and83

draw Bcrit as the authors measured. We see that the correlation to the critical batch size is similar for84

both SOGNS and PEPGNS.85

3

101

SOsimple

101

102

PE
Ps

im
pl

e

(a) Scatter plot comparing the exact and approximate
GNS estimators BPEPsimple and BSOsimple.

10 310 210 1100

Training Loss

101

102

GN
S

PEP simple

SO simple

crit

(b) Replication of GNS vs. loss plot from McCandlish
et al. [2018], including their results for Bcrit and both
BPEPsimple and BSOsimple.

Figure 2: Investigation of the accuracy of the approximation from Section 3.1 on MNIST.

10 2 10 1

2
b

10 2

10 1

|G
sm

al
l|2

layer 0
layer 1
layer 2
layer 3
layer 4
layer 5
layer 6
layer 7
layer 8
layer 9

103 104

SOsimple

102

103

104
PE

Ps
im

pl
e

Figure 3: Results of a 111M parameter language model experiment measuring GNS on a fixed
checkpoint. On the left, the approximate small batch gradient norm is compared to the exact and on
right, the approximate SOGNS is compared to the exact PEPGNS.

4.2 Large Scale Gradient Noise Scale86

To verify that this method is useful in practice, a checkpoint from a 111M parameter language87

model [Dey et al., 2023] was tested. In Figure 3, SOGNS and PEPGNS are compared, showing that88

the approximation tracks the exact case but diverges for some layers in the network. McCandlish et al.89

[2018] observes that the GNS may diverge by an order of magnitude from the measured “critical90

batch size” so the relationship we observe is within the margin of error.91

5 Conclusion92

Choosing a batch size is often achieved with reference to previous experiments or by hyperparameter93

search, which can be especially onerous in novel settings where a reasonable choice for batch size94

is not obvious. The GNS is a useful metric to navigate in such circumstances. In this paper, we95

observe that the per-example gradient norm trick [Goodfellow, 2015] could provide a useful shortcut96

for a minimal variance estimate of the GNS but it is inefficient in practical settings involving large97

transformer models [Li et al., 2022], requiring O(T 2) operations in sequence length T . To address98

this, we propose SOGNS, an approximation that operates in O(T), while correlating closely with the99

exact GNS. As practitioners now know that it is critical to log the gradient norms during training, we100

hope that this work can make GNS an accessible metric for large scale experiments.101

4

References102

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,103

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel104

Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,105

Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott106

Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya107

Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.108

Denis Choquet, Pierre L’Ecuyer, and Christian Léger. Bootstrap confidence intervals for ratios of109

expectations. ACM Trans. Model. Comput. Simul., 9(4):326–348, oct 1999. ISSN 1049-3301. doi:110

10.1145/352222.352224. URL https://doi.org/10.1145/352222.352224.111

Nolan Dey, Gurpreet Gosal, Zhiming, Chen, Hemant Khachane, William Marshall, Ribhu Pathria,112

Marvin Tom, and Joel Hestness. Cerebras-GPT: Open compute-optimal language models trained113

on the Cerebras wafer-scale cluster, 2023.114

Ian Goodfellow. Efficient per-example gradient computations, 2015.115

John Graunt. Natural and Political Observations Mentioned in a following index made upon the116

Bills of Mortality. London: Printed by John Martyn, Printer to the Royal Society, at the Bell in St.117

Paul’s Church-yard, 5th edition, 1676.118

Xuechen Li, Florian Tramèr, Percy Liang, and Tatsunori Hashimoto. Large language models can be119

strong differentially private learners, 2022.120

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of121

large-batch training, 2018.122

Gaspar Rochette, Andre Manoel, and Eric W. Tramel. Efficient per-example gradient computations123

in convolutional neural networks, 2019.124

A Taxonomy125

The following taxonomy describes the different methods available to compute GNS. Each computes126

|GBsmall |2 in a different way:127

• Microbatch: multiple GBsmall are computed over a set of microbatches128

– DDP: Each GBsmall are gradients communicated between DDP nodes [McCandlish et al.,129

2018]130

– Sequential: Each GBsmall are computed sequentially during gradient accumulation131

• Subbatch: During gradient accumulation, select GBsmall partway through132

• Per-example:133

– Exact: |GBsmall |2 is computed directly the per-example gradient trick [Goodfellow,134

2015, Li et al., 2022]135

– Approximation: |GBsmall |2 is approximated by assuming input activations are normally136

distributed with mean zero137

The choice of which method to use may be dictated by the hardware available.138

B Variance of GNS Measurements139

The GNS is a ratio estimator [Graunt, 1676], it is of the form r = x̄
ȳ , where x̄ and ȳ are the sample140

means of two random variables, in this case |G|2 and S.141

To estimate the variance of this estimator we chose a Jackknife estimator [Choquet et al., 1999],142

var(r) =
n− 1

n

n∑
i=1

(ri − rJ)
2
,

5

https://doi.org/10.1145/352222.352224

where ri is the ratio estimator computed with the ith sample removed and rJ is the jackknife estimate143

of the ratio. Performing a simulation with this estimator it is possible to estimate the effect of the144

Bsmall and Bbig on the variance of the estimator. These two cases are illustrated in Figures 1. We145

can see that the size of Bbig is not important because the decrease in the variance as the number146

of samples increases is constant for all Bbig. However, the size of Bsmall is important because the147

variance decreases as Bsmall increases, regardless of the samples processed.148

This reinforces the intuition that the lowest variance estimate of the GNS should use the smallest149

Bsmall possible. The smallest choice is Bsmall = 1, therefore obtaining the per-example gradient150

norm is valuable. In the following Section 3 the per-example gradient norm trick provides this norm151

efficiently using gradients that are already computed in the backward pass.152

B.1 Variance of the Gradient Noise Scale153

The following code was used to produce Figure 1.154

i m p o r t numpy as np155
i m p o r t m a t p l o t l i b . p y p l o t a s p l t156
i m p o r t h a s h l i b157

158
from d a t a c l a s s e s i m p o r t d a t a c l a s s159

160
161

N = 1000162
s c a l e = 1 .163
use e x p l i c i t random s t a t e , b u t s e t i t t o be random by d e f a u l t164
rng = np . random . RandomState (np . random . r a n d i n t (1))165
t rue_G = rng . r andn (N)166
t rue_G = np . s q r t (N) * (t rue_G / np . l i n a l g . norm (t rue_G)) # n o r m a l i s e t o have e x a c t l y norm N167

168
d e f draw_G (B) :169

r e t u r n (s c a l e / np . s q r t (B)) * rng . r andn (N) + t rue_G170
171

d e f m e a n _ o f _ m i c r o b a t c h e s (s m a l l _ b a t c h , l a r g e _ b a t c h) :172
t h i s i s t h e normal s e t t i n g , where you have a l a r g e b a t c h and you s p l i t i t173
i n t o s m a l l b a t c h e s , comput ing t h e norm of each and t h e norm of t h e whole174
a s s e r t l a r g e _ b a t c h % s m a l l _ b a t c h == 0175
r = l a r g e _ b a t c h / / s m a l l _ b a t c h176
G = np . a r r a y ([draw_G (s m a l l _ b a t c h) f o r _ i n r a n g e (r)])177
r e t u r n np . mean (np . l i n a l g . norm (G, a x i s = 1)) * * 2 , np . l i n a l g . norm (G. mean (0)) * * 2178

179
f u n c s = { ’ mean_of_mic roba t ches ’ : m e a n _ o f _ m i c r o b a t c h e s }180

181
d e f j a c k k n i f e (x , y) :182

n = l e n (x)183
i f n == 1 :184

r e t u r n x [0] / y [0] , np . nan185
x , y = np . a r r a y (x) , np . a r r a y (y)186
r = np . mean (x) / np . mean (y)187
x = x . r e s h a p e (−1 , 1) . r e p e a t (n , a x i s =1) * ~np . eye (n , d t y p e = boo l)188
y = y . r e s h a p e (−1 , 1) . r e p e a t (n , a x i s =1) * ~np . eye (n , d t y p e = boo l)189
r _ i = np . mean (x , a x i s =0) / np . mean (y , a x i s =0) # v e c t o r i s e d j a c k k n i f e190
r _ j = n * r − (((n − 1) / n) * r _ i . sum ())191
v a r i a n c e192
v a r _ r = ((n − 1) / n) * np . sum ((r _ i − r _ j) * * 2)193
r e t u r n r _ j , np . s q r t (v a r _ r)194

195
d e f r u n _ r e p l i c a t e s (l a r g e _ b a t c h , s m a l l _ b a t c h , r e p l i c a t e s , f u n c _ t y p e = ’ s imple_norms ’) :196

f o r _ i n r a n g e (r e p l i c a t e s) :197
G_small , G_ la rge = f u n c s [f u n c _ t y p e] (s m a l l _ b a t c h , l a r g e _ b a t c h)198
G_es t = (l a r g e _ b a t c h * G_la rge − s m a l l _ b a t c h * G_small) / (l a r g e _ b a t c h − s m a l l _ b a t c h)199
S _ e s t = (G_small − G_la rge) / (1 . / s m a l l _ b a t c h − 1 . / l a r g e _ b a t c h)200
y i e l d S_es t , G_es t201

202
@ d a t a c l a s s203
c l a s s Expe r imen t :204

s a m p l e s _ p r o c e s s e d : l i s t205
B_es t : l i s t206
sigmaB : l i s t207
S _ e s t : l i s t208
G_es t : l i s t209

210
@ s t a t i c m e t h o d211
d e f mean (e x p e r i m e n t s) :212

s a m p l e s _ p r o c e s s e d = e x p e r i m e n t s [0] . s a m p l e s _ p r o c e s s e d213
B_es t = np . mean ([e . B_es t f o r e i n e x p e r i m e n t s] , a x i s =0)214
sigmaB = np . mean ([e . sigmaB f o r e i n e x p e r i m e n t s] , a x i s =0)215
S _ e s t = np . mean ([e . S _ e s t f o r e i n e x p e r i m e n t s] , a x i s =0)216
G_es t = np . mean ([e . G_es t f o r e i n e x p e r i m e n t s] , a x i s =0)217
r e t u r n Exper imen t (s a m p l e s _ p r o c e s s e d , B_est , sigmaB , S_es t , G_es t)218

219
d e f g a t h e r _ d a t a (l a r g e _ b a t c h , s m a l l _ b a t c h) :220

S_es t , G_es t = [] , []221
s a m p l e s _ p r o c e s s e d , B_est , sigmaB = [] , [] , []222
f o r i , (s , g) i n enumera t e (r u n _ r e p l i c a t e s (223

6

l a r g e _ b a t c h , s m a l l _ b a t c h , 100 , f u n c _ t y p e = ’ mean_of_mic roba t ches ’224
)) :225

S _ e s t . append (s)226
G_es t . append (g)227
b , s igma = j a c k k n i f e (S_es t , G_es t)228
s a m p l e s _ p r o c e s s e d . append ((i +1) * l a r g e _ b a t c h)229
B_es t . append (b)230
sigmaB . append (s igma)231

r e t u r n Exper imen t (s a m p l e s _ p r o c e s s e d , B_est , sigmaB , S_es t , G_es t)232
233

d e f g a t h e r _ c a c h e d _ d a t a (l a r g e _ b a t c h , s m a l l _ b a t c h) :234
d e f g e n e r a t e _ h a s h (l a r g e _ b a t c h , s m a l l _ b a t c h) :235

b a t c h _ s t r = s t r (l a r g e _ b a t c h) + " _ " + s t r (s m a l l _ b a t c h)236
h a s h _ o b j = h a s h l i b . sha256 (b a t c h _ s t r . encode ())237
s m a l l _ h a s h = h a s h _ o b j . h e x d i g e s t () [: 8]238
r e t u r n s m a l l _ h a s h239

r e p e a t e d l y c a l l g a t h e r _ d a t a and cache t h e r e s u l t s t o f i l e240
from p a t h l i b i m p o r t Pa th241
i m p o r t p i c k l e242
check i f c a c h e _ d i r e x i s t s243
c a c h e _ d i r = Pa th (’ gns_va r_cache ’)244
c a c h e _ d i r . mkdir (e x i s t _ o k =True)245
g n s _ v a r _ f p a t h = c a c h e _ d i r / f " g n s _ v a r _ c a c h e _ { g e n e r a t e _ h a s h (l a r g e _ b a t c h , s m a l l _ b a t c h) } . p k l "246
l o a d d a t a i f we have any247
i f g n s _ v a r _ f p a t h . e x i s t s () :248

wi th open (g n s _ v a r _ f p a t h , ’ rb ’) a s f :249
c a c h e d _ e x p e r i m e n t s = p i c k l e . l o a d (f)250

e l s e :251
c a c h e d _ e x p e r i m e n t s = []252

and t h e n compute more anyway253
e x p e r i m e n t = g a t h e r _ d a t a (l a r g e _ b a t c h , s m a l l _ b a t c h)254
append t h i s t o t h e d a t a we have255
c a c h e d _ e x p e r i m e n t s . append (e x p e r i m e n t)256
save t h e d a t a257
wi th open (g n s _ v a r _ f p a t h , ’wb ’) a s f :258

p i c k l e . dump (c a c h e d _ e x p e r i m e n t s , f)259
r e t u r n Exper imen t . mean (c a c h e d _ e x p e r i m e n t s)260

261
d e f p l o t _ g n s _ v a r (l a r g e _ b a t c h e s , s m a l l _ b a t c h e s) :262

t h i s f u n c t i o n can be run r e p e a t e d l y t o improve t h e e s t i m a t e o f t h e s t d e r r263
p r o p _ c y c l e = p l t . r cPa rams [’ axes . p r o p _ c y c l e ’]264
c o l o r s = p r o p _ c y c l e . by_key () [’ c o l o r ’]265
f i g , ax1a = p l t . s u b p l o t s (1 , 1)266
f i g . s e t _ f i g h e i g h t (6)267
ax1b = ax1a . tw inx ()268
f o r i , (l a r g e _ b a t c h , s m a l l _ b a t c h) i n enumera t e (z i p (l a r g e _ b a t c h e s , s m a l l _ b a t c h e s)) :269

e = g a t h e r _ c a c h e d _ d a t a (l a r g e _ b a t c h , s m a l l _ b a t c h)270
c o l o r = c o l o r s [i]271
ax1a . p l o t (e . s a m p l e s _ p r o c e s s e d , e . B_est ,272

l a b e l =f ’ l ={ l a r g e _ b a t c h } , s ={ s m a l l _ b a t c h } ’ , a l p h a = 0 . 5 , c o l o r = c o l o r)273
ax1b . p l o t (e . s a m p l e s _ p r o c e s s e d , e . sigmaB ,274

l a b e l =f ’ l ={ l a r g e _ b a t c h } , s ={ s m a l l _ b a t c h } ’ , a l p h a = 0 . 5 , c o l o r = c o l o r , l i n e s t y l e = ’ dashed ’)275
ax1a . h l i n e s (1 . 0 , 0 , e . s a m p l e s _ p r o c e s s e d [− 1] , l i n e s t y l e s = ’ dashed ’ , a l p h a = 0 . 7)276
ax1a . s e t _ y l i m (0 . 9 , 1 . 1)277
ax1a . s e t _ x l a b e l (’ Samples p r o c e s s e d ’)278
ax1a . s e t _ y l a b e l (’ S o l i d : E s t i m a t e d g r a d i e n t n o i s e s c a l e ’)279
ax1b . s e t _ y l a b e l (’ Dashed : S t a n d a r d e r r o r o f e s t i m a t e d g r a d i e n t n o i s e s c a l e ’)280
ax1a . s e t _ x s c a l e (’ log ’)281
ax1a . l e g e n d ()282
p l t . show ()283

284
example usage285
p l o t _ g n s _ v a r ([4 , 8 , 16 , 32 , 64 , 1 2 8] , [1] * 6)286

C Efficient Per-Example Gradient Norm Notation287

This is a description of the trick proposed by Goodfellow [2015] using Einstein and Lagrange288

notation.289

For the weights W ∈ RI×K of a linear layer, with inputs X ∈ RB×I and outputs Y ∈ RB×K , the290

gradient of the loss l is291

δl

δW
=

δl

δY

δY

δW
= XT δl

δY
which can be expressed in Einstein and Lagrange notation for a batch (left) or per-example (right) as292

w′
ik = xbiy

′
bk w′

bij = xbiy
′
bk

with the squared norm in either case being293

n2 = (w′)2ik = w′
ikw

′
ik n2

b = (w′)2bik = w′
bikw

′
bik

and the per-example case factorizing as294

n2
b = (w′)2bik = xbixbiy

′
bky

′
bk.

7

Figure 4: The naive approximation is compared to an exact computation of the per-example norm,
with the ratio of the two shown on the y-axis.

So, it is sufficient to computed the squared norm of X and Y′ for each example to obtain exact295

per-example gradient norms of linear layer weights.296

C.1 Per-Example Gradient Norms in 3D297

For three dimensions, X ∈ RB×T×I and Y ∈ RB×T×K , the sums do not factorize because the298

per-example gradient must be reduced over the t dimension:299

w′
ij = xbtiy

′
btk w′

bij = xbtiy
′
btk.

In this case the resulting per-example norm is [Li et al., 2022]300

n2
b = (w′)2bij = (

∑
t

xbtiy
′
btk)

2 = xbtiy
′
btkxbuiy

′
buk.

The contraction order is vital to the efficiency of this computation as301

n2
b =

∑
t,u

(∑
i

xbtihbtu

)(∑
k

y′btky
′
buk

)
has quadratic complexity over 1 ≤ u, i ≤ T where T is typically sequence length in language302

modeling. In these cases, specifically when 2T 2 > IK [Li et al., 2022], computing the per-example303

gradients explicitly before reduction is preferred:304

n2
b =

∑
i,k

(∑
t

xbtiy
′
btk

)2

.

This operation can also be performed as a grouped convolution [Rochette et al., 2019], but the overall305

contractions hit the same complexity limits. In our experiments we unfold using im2col and then306

apply the method above when computing exact or approximate gradient norms of convolutional307

layers.308

D Simulation Results309

As discussed in Section 3.1, the approximation in Section 3.1 may either use the unit Gaussian310

assumption or assume the standard deviation of the activations is known; these are referred to here as311

the naive or relaxed assumptions, respectively. The results of a simulation are shown in Figure 5 and312

Figure 4 for the relaxed and naive approximations. It can be seen that the relaxed approximation is313

more accurate than the naive approximation.314

E Approximation of Large Batch Gradient Norms315

The approximation presented in Section 3.1 may be interpreted as using a scaled version of the output316

gradient in place of the gradient with respect to the weights, specifically we can define ω′ as317

nb
2 ≈ η2 = Iσb

2
∑
k

(∑
t

y′btk

)2

=
∑
k

ω′
bk

2 where ω′
bk =

√
Iσb

∑
t

y′btk.

8

Figure 5: The relaxed approximation is compared to an exact computation of the per-example norm,
with the ratio of the two shown on the y-axis.

The approximation can then also be applied to compute318

|GBbig |2 ≈ η2 =
∑
k

(∑
b

ω′
bk

)2

.

The accuracy of this approximation is illustrated in Figure 6b.319

F MNIST Approximation Fit320

For the remaining quantities not discussed in Section 4.1, Figure 6 describes the small batch squared321

gradient norm, the large batch squared gradient norm, the unbiased squared gradient norm and trace322

estimators of Equation 2.323

9

10 12 10 10 10 8 10 6 10 4 10 2 100 102

2
b

10 12

10 10

10 8

10 6

10 4

10 2

100

102

|G
sm

al
l|2

log(y)=1.00log(x)+0.43
y=x

(a) Exact per-example squared gradient norm |GBsmall |2
vs approximate E[η2

b].

10 13 10 11 10 9 10 7 10 5 10 3 10 1 101

2

10 13

10 11

10 9

10 7

10 5

10 3

10 1

101

|G
bi

g|2

log(y)=1.00log(x)-0.00
y=x

(b) Exact squared gradient norm |GBbig |2 vs approxi-
mate η2.

10 13 10 10 10 7 10 4 10 1 102

| |2SO

10 13

10 10

10 7

10 4

10 1

102

|
|2

log(y)=0.99log(x)-1.97
y=x

(c) Squared gradient norm estimator |G|2 vs approxi-
mate |G|2SO .

10 12 10 10 10 8 10 6 10 4 10 2 100 102

SO

10 12

10 10

10 8

10 6

10 4

10 2

100

102 log(y)=1.00log(x)+0.44
y=x

(d) Exact trace estimator S vs approximate SSO .

Figure 6: Investigation of the accuracy of the approximation for all statistics discussed in Section 3.1
on MNIST, looking at only the convolutional layers.

10

	Introduction
	Background
	Efficient Per-example Norms
	Proposed Additional Approximation

	Experiments
	Approximate Per-Example Gradient Noise Scale
	Large Scale Gradient Noise Scale

	Conclusion
	Taxonomy
	Variance of GNS Measurements
	Variance of the Gradient Noise Scale

	Efficient Per-Example Gradient Norm Notation
	Per-Example Gradient Norms in 3D

	Simulation Results
	Approximation of Large Batch Gradient Norms
	MNIST Approximation Fit

