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Abstract
Recent works have explored the use of weight
sparsity to improve the training efficiency (test
accuracy w.r.t training FLOPs) of deep neural
networks (DNNs). These works aim to reduce
training FLOPs but training with sparse weights
often leads to accuracy loss or requires longer
training schedules, making the resulting training
efficiency less clear. In contrast, we focus on us-
ing sparsity to increase accuracy while using the
same FLOPs as the dense model and show train-
ing efficiency gains through higher accuracy. In
this work, we introduce Sparse-IFT, a family of
Sparse Iso-FLOP Transformations which are used
as drop-in replacements for dense layers to im-
prove their representational capacity and FLOP ef-
ficiency. Each transformation is parameterized by
a single hyperparameter (sparsity level) and pro-
vides a larger search space to find optimal sparse
masks. Without changing any training hyperpa-
rameters, replacing dense layers with Sparse-IFT
leads to significant improvements across com-
puter vision (CV) and natural language processing
(NLP) tasks, including ResNet-18 on ImageNet
(+3.5%) and GPT-3 Small on WikiText-103 (-0.4
PPL), both matching larger dense model variants
that use 2x or more FLOPs. To our knowledge,
this is the first work to demonstrate the use of spar-
sity for improving the accuracy of dense models
via a simple-to-use set of sparse transformations.
Code is available at: https://github.com/
CerebrasResearch/Sparse-IFT.

1. Introduction
Increases in model size and training data have led to many
breakthroughs in deep learning (e.g., AlexNet (Krizhevsky
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Figure 1: Accuracy vs. Training FLOPs for different vari-
ants of ResNet on ImageNet. Sparse Iso-FLOP Transforma-
tion (Sparse-IFT) provides significant accuracy gains across
different models and sparsity levels while using the same
FLOP budget as its dense counterpart. In particular, the best
Sparse-IFT variants of ResNet-18 and ResNet-34 achieve
3.5% and 2.7% improvements over their dense baselines,
respectively.

et al., 2012), ResNet (He et al., 2016), Transform-
ers (Vaswani et al., 2017), GPT (Radford et al., 2018; 2019),
AlphaGo (Silver et al., 2017), etc.). Consequently, the com-
putational and memory footprint of training and deploying
deep neural networks (DNNs) has grown exponentially. To
enable the deployment of large models, multiple techniques
(e.g., distillation (Hinton et al., 2015), quantization (Han et
al., 2015a), pruning (Han et al., 2015b)) have been intro-
duced to reduce inference FLOPs and memory requirements.
While these techniques improve inference efficiency (test ac-
curacy w.r.t inference FLOPs), the associated training costs
are still prohibitive. In this work, we focus on improving
the training efficiency (test-accuracy w.r.t training FLOPs)
of DNNs.

Recent works (Evci et al., 2020; Jayakumar et al., 2020)
have explored using weight sparsity to reduce the FLOPs
spent in training. Frankle & Carbin (2018) demonstrate
that sparse subnetworks (termed “lottery tickets”) exist at
initialization and can be trained to match the accuracy of
their original dense network. Inspired by this result, various
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dynamic sparse training (DST) methods (Ma et al., 2022;
Evci et al., 2020; Liu et al., 2021a; Jayakumar et al., 2020)
attempt to find optimal sparse subnetworks in a single train-
ing run. While these methods primarily aim to improve
training efficiency by reaching dense accuracy with fewer
FLOPs, they often perform worse than their dense baselines
or rely on longer training schedules (up to 2-5× training
iterations) to close the gap. As a result, these techniques
can sometimes even require more FLOPs than training the
dense model (Ma et al., 2022; Evci et al., 2020; Jayakumar
et al., 2020). In contrast to prior work, we focus on show-
ing training efficiency gains by using sparsity to increase
accuracy while consuming the same training FLOPs as the
dense model. Specifically, we introduce a family of Sparse
Iso-FLOP Transformations (Sparse-IFT) that can be used
as drop-in replacements for dense layers in DNNs. These
transformations increase the representational capacity of
layers and facilitate the discovery of optimal sparse subnet-
works without changing the layer’s underlying FLOPs (i.e.,
Iso-FLOP). For example, making a layer wider but sparser
increases dimensionality while still maintaining FLOPs due
to sparsity. All Sparse-IFT members are parameterized by a
single hyperparameter, the sparsity level. Figure 1 summa-
rizes the ImageNet performance with ResNet models, where
our Sparse Wide IFT variants significantly increase the ac-
curacy of matching Iso-FLOP dense models. In particular,
Sparse Wide ResNet-18 at 90% sparsity improves the top-1
accuracy from 70.9% to 74.4% (+3.5%), and outperforms
a dense ResNet-34 (74.2%) while using 2x fewer FLOPs.
We emphasize that these gains were obtained by replacing
dense layers with Sparse-IFTs and required no changes to
training hyperparameters. The main contributions of our
work are:

1. We introduce a family of Sparse Iso-FLOP Transfor-
mations to improve the training efficiency of DNNs
by improving accuracy while holding FLOPs constant.
These transformations are parameterized by a single
hyperparameter (sparsity level) and can be used as
drop-in replacements for dense layers without chang-
ing the overall FLOPs of the model.

2. In the CV domain, using Sparse-IFT increases the top-
1 accuracy of ResNet-18 and ResNet-34 by 3.5% and
2.6% respectively on ImageNet. Finetuning these pre-
trained models for object detection (MS COCO) and
segmentation (CityScapes) leads to an improvement of
5.2% mAP and 2.4% mIoU, respectively.

3. In the NLP domain, using Sparse-IFT with GPT-3
Small leads to a 0.4 perplexity improvement on the
WikiText-103 language modeling task.

4. We report wall-clock speed-ups for both training on the
Cerebras CS-2 (Lie, 2022a;b) and inference on a CPU

with unstructured sparsity, highlighting the practical
value of Sparse-IFT.

2. Method
In this section, we present our method to improve training
efficiency. We first explain our intuition and hypotheses,
followed by our methodology.

2.1. Training with Dense Matrices is FLOP Inefficient

Prior works have shown that modern DNNs are overparam-
eterized and that the features and weights learned at each
layer are sparse. Recent work of Lottery Ticket Hypothesis
(LTH) (Frankle & Carbin, 2018) demonstrates that sparse
DNNs can be trained to the same accuracy as their dense
counterparts, as long as one seeds the training with a good
sparsity mask (termed as “lottery ticket”). These works
indicate that the optimal set of weights in a DNN is sparse.
Therefore, representing these weights as dense matrices
throughout training is FLOP inefficient, and training with
sparse matrices should be more efficient. However, in prac-
tice, most sparse training methods obtain worse accuracy
than dense baseline. We hypothesize that this is due to the
inefficiency of searching for “lottery tickets” within a single
training run.

While sparse models reduce the FLOPs needed per step, we
hypothesize that existing sparse training methods make sub-
optimal use of these computational savings. For example,
state-of-the-art (SOTA) sparse training methods (Jayakumar
et al., 2020; Evci et al., 2020) invest these FLOP savings
into longer training schedules to close the accuracy gap and
compensate for the inability to discover an optimal mask
earlier in training. This setup is inefficient since it ultimately
requires more training FLOPs than the dense baseline to
reach the same target accuracy. In our work, we take an
orthogonal approach and invest these FLOP savings into (a)
increasing the representational capacity of a layer and (b)
increasing its search space, which we hypothesize can facil-
itate the discovery of an optimal sparse mask (Ramanujan
et al., 2020; Stosic & Stosic, 2021). We do this by replacing
dense transformations with FLOP-equivalent sparse trans-
formations. We denote these transformations as the Sparse
Iso-FLOP Transformation (Sparse-IFT) family.

2.2. Setup

For clarity, we will explain our method for a fully connected
neural network. In Appendix A.1, we detail the straight-
forward extension of our method to convolutional layers.
Let N denote a L layered DNN parameterized by ΘN . Let
ΘN ∈ {θ1, ..., θL} denote the parameters of the DNN. The
output of the l-th layer is defined as: zl = σ(fθl(zl−1))
for some activation function σ (e.g., ReLU (Nair & Hin-
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Figure 2: Different members of the Sparse-IFT family. Transformation of all members is parameterized by a single
hyperparameter (i.e., sparsity level (s)). Black and white squares denote sparse and active weights, respectively. Green
block indicates a non-linear activation function (e.g., BatchNorm, ReLU, LayerNorm). All transformations are derived with
sparsity set to 50% as an example, are Iso-FLOP to the dense feedforward function fθl , and hence can be used as a drop-in
replacement of fθl . As shown in the figure, FLOPs spent in a dense matrix multiplication can be utilized to enhance the
representational capacity of the feedforward function using unstructured sparsity. See Section 2.4 for more details about
each member.

ton, 2010)) and feedforward function fθl . Specifically,
let fθl(zl−1) = θTl zl−1, where θl ∈ RDin×Dout , zl−1 ∈
RDin×B and B, Din, Dout denote the batch-size, input,
and output dimensionality of features respectively. The total
FLOPs needed for fθl are given by B·Din·Dout.

2.3. Sparse Iso-FLOP Transformations

In the standard setup, the feedforward function fθl computes
the output features as a linear transformation of input fea-
tures. From a theoretical perspective, the feedforward func-
tion can make use of arbitrary non-linear transformations.
However, in practice, most transformations are expressed as
dense matrix multiplications due to widespread support on
GPUs (Nvidia, 2023).

As stated before, we are interested in improving the training
efficiency of DNNs, by enhancing the representational ca-
pacity of the feedforward function. Naively increasing the
representational capacity by stacking more layers (Lin et al.,
2014a), increasing width (Zagoruyko & Komodakis, 2016),
mixture of experts (Shazeer et al., 2016), etc. increases the
computational FLOPs. In our work, we use unstructured
sparsity in weight matrices and ensure that the FLOPs of
the transformation are the same as that of a dense feedfor-
ward function. Let Ψl denote the set of Sparse Iso-FLOP
Transformations (Sparse-IFT) for a particular layer l:

Ψl : {ψl(s), 0 ≤ s < 1, g(ψl) ≈ g(fθl)},

where ψl is a transformation, s represents the sparsity level,
and g(.) returns the computational FLOPs. Each transfor-

mation in this set satisfies the following properties: (1) the
computational FLOPs of the transformation ψl are same
as that of dense transformation fθl , and (2) the transfor-
mation is parameterized by a single hyperparameter - the
sparsity level. Since these transformations are Iso-FLOP to
the dense feedforward function, we can use them as drop-
in replacements without affecting the FLOPs of a layer.
While many FLOP-equivalent transformations fall under
the Sparse-IFT family, in this work, we detail four different
members: Sparse Wide, Sparse Parallel, Sparse Factorized,
and Sparse Doped.

2.4. Members of Sparse-IFT

Sparse Wide The sparse wide transformation augments
the representational capacity of a layer by increasing the
number of output features while keeping s fraction of
weights sparse. When using this transformation, we widen
the input and output features for all the L layers of the
network with the same widening factor, ksw, to avoid a
mismatch in feature dimensionality across layers. Let
θswl ∈ Rksw·Din×ksw·Dout denote the transformation matrix,
with s fraction of weights being sparse. Since the fraction
of non-sparse weights is given by 1− s, the FLOPs required
by this transformation areB·(ksw·Din)·(ksw·Dout)·(1−s).
Setting these equal to the FLOPs of the original dense fθl ,
we obtain the widening factor ksw =

√
1

(1−s) . If we set the
sparsity s to 0, we obtain ksw as 1 and recover the original
dense feedforward function.

Sparse Parallel The sparse parallel transformation re-
places the feedforward function with a sum of ksp non-linear
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functions. Let θspl ∈ {θ
sp,1
l , ..., θ

sp,ksp
l } denote the param-

eters of this transformation, where θsp,jl ∈ RDin×Dout de-
notes the transformation matrix of jth function, where s
fraction of weights are sparse. The sparse parallel transfor-
mation in this case is ψspl =

∑ksp
j=1 σ((θsp,jl )T zl), where σ

is a non linear function. In practice, ψspl is implemented as a
layer with ksp parallel branches. The computational FLOPs
of this transformation is ksp·B·Din·Dout·(1− s). Setting
these FLOPs equal to FLOPs of fθ, we obtain ksp = 1

(1−s) .
Note, at s = 0, the number of parallel branches ksp is 1. If
we replace the non-linear function σ with Identity, we can
recover the original dense feedforward transformation.

Sparse Factorized The transformation matrix of the feed-
forward function fθl is denoted by θl ∈ RDin×Dout . Multi-
ple works have explored matrix factorization techniques to
express the transformation matrix θl as a product of two ma-
trices θl = UV T , where U ∈ RDin×d, V ∈ RDout×d. Kho-
dak et al. (2020); Tai et al. (2016) and Chen et al. (2021b)
have explored low-rank factorization (d << Dout) as a
form of structured sparsity to improve training and infer-
ence efficiency, while Arora et al. (2018) and Guo et al.
(2020a) have explored overparameterized factorizations for
better generalization and faster convergence. In contrast,
we use factorization to augment the representational ca-
pacity without decreasing or increasing the FLOPs. More
precisely, let θsfl ∈ {Ul, Vl} denote the parameters of this
transformation, where Ul ∈ RDin×dsf , Vl ∈ Rdsf×Dout

are sparse matrices with s fraction of their weights being
sparse. The functional transformation in this case is ψsfl =
V Tl σ(UTl zl). The computational FLOPs of this transforma-
tion is dsf ·B·(Din +Dout)·(1− s). Setting these FLOPs
equal to FLOPs of fθl , we obtain dsf = Din·Dout

(Din+Dout)·(1−s) .
Note, setting sparsity s = 0, we recover a non-linear low-
rank factorization with dense matrices.

Sparse Doped family of transformation is inspired by
works (Chen et al., 2021a; Thakker et al., 2021; Udell &
Townsend, 2019; Candès et al., 2011) which approximate a
dense matrix with a combination of low-rank factorization
and sparse matrix. In our work, we replace the feedforward
function with low-rank factorization (with rank dsd) and
an unstructured sparse weight matrix (with sparsity s). Let
Ul ∈ RDin×dsd , Vl ∈ Rdsd×Dout denote the low-rank matri-
ces, and θsdl ∈ RDin×Dout denote the matrix with unstruc-
tured sparsity. The functional transformation, in this case,
is given by ψsdl = V Tl (UTl zl) + σ((θsdl )T zl). The com-
putational FLOPs associated with this transformation are
B·dsd·(Din +Dout) + (1− s)·B·Din·Dout. Setting these
FLOPs equal to FLOPs of fθl , we obtain dsd = s·Din·Dout

(Din+Dout)
.

Note, as s → 0 and dsd → 0, the low-rank component
of the transformation disappears, and we can recover the
dense feedforward function as a special case by setting σ to

Identity.

2.5. Cardinality of Search Space

One of our hypotheses is that increasing the search space of
the sparsity mask via Sparse-IFT can make training more
efficient. Results from past work support this hypothesis. Ra-
manujan et al. (2020) demonstrate that the odds of finding
a lottery ticket in a randomly initialized network increase
with the width of a network. Liu et al. (2022b) and Stosic
& Stosic (2021) show that increasing the search space by
increasing width or depth improves accuracy. In our work,
we define the cardinality of a search space as the number of
weights a sparse training method can explore. Table 1 char-
acterizes the cardinality of search space for each member of
the Sparse-IFT family. The search space for Sparse Wide,
Sparse Parallel, and Sparse Factorized transformations in-
crease proportional to the width scaling factor, number of
parallel branches, and size of intermediate hidden dimen-
sion, respectively. Sparse Doped transformation splits its
computational FLOPs between low-rank factorization and
unstructured sparse weight matrix. The size of the unstruc-
tured weight matrix is invariant to sparsity; thus cardinality
of search space for this transformation is constant.

Table 1: Cardinality of search space of sparsity mask for
different members of the Sparse-IFT family.

TRANSFORMATION CARDINALITY OF SEARCH SPACE

SPARSE WIDE (ksw)
2·(Din·Dout)

SPARSE PARALLEL ksp·(Din·Dout)
SPARSE FACTORIZED dsf ·(Din +Dout)

SPARSE DOPED Din·Dout

3. Experiments
In this section, we demonstrate how transformations from
the Sparse-IFT Family lead to improvements across a va-
riety of different tasks in the CV and NLP domains. First,
in section 3.2, we describe the experimental setups and
validate the design choices through multiple ablation stud-
ies on CIFAR-100 (Krizhevsky et al., 2009), followed by
results on ImageNet (Krizhevsky et al., 2012). Then, in
section 3.5, we highlight the advantages of pre-training with
Sparse-IFT through gains on downstream tasks. Next, we
present the benefits of Sparse-IFT in the NLP domain by
demonstrating results on BERT (Devlin et al., 2018) and
GPT (Brown et al., 2020) in section 3.6. Finally in section 4,
we show speed-ups during training and inference with un-
structured sparsity, measured in wall clock time. Unless
stated otherwise, the results presented below are obtained
by replacing all dense layers with a given transformation
from the Sparse-IFT family while only tuning the sparsity
level. All sparse models are trained using a uniform sparsity
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Table 2: Evaluation of Sparse Wide IFT using various sparse
training methods with ResNet-18 on CIFAR-100 across
different values of sparsity (columns). Best accuracy for
each sparse training method is highlighted in bold.

DENSE
SPARSE

TRAINING METHOD
0.50 0.75 0.90

77.0 ± 0.2
STATIC 78.5 78.3 78.2

SET 78.8 79.2 79.8
RIGL 79.1 79.5 80.1

distribution (i.e., all layers have the same sparsity level). We
adopt the default hyperparameters from RigL (Evci et al.,
2020) for dynamic sparsity. More details about the setup
can be found in Appendix B.2.

3.1. CV Implementation Details

We evaluate our method on CIFAR-100 and ImageNet
using convolutional networks and hybrid Vision Trans-
former (ViT) networks. We follow published training set-
tings for CIFAR-100 (DeVries & Taylor, 2017) and Ima-
geNet (Nvidia, 2019b). For both datasets, we follow the
standard evaluation procedures and report the top-1 accu-
racy. Details for model architectures, datasets, and training
hyperparameters are given in Appendix B.2.

3.2. Results and Ablations on CIFAR-100

In this section, we conduct various ablations to validate our
design choices. Unless stated otherwise, all experiments
below are with ResNet-18 architecture on CIFAR-100.

Importance of Dynamic Sparsity All members of the
Sparse-IFT family utilize transformations with unstructured
sparsity. This study investigates the importance of the sparse
training method when training different configurations of
Sparse-IFT architectures. For this analysis, we focus on the
Sparse Wide transformation and evaluate it with transfor-
mations obtained with sparsity ∈ {50%, 75%, 90%} using
three sparse training methods: static sparsity, SET (Mocanu
et al., 2018) and RigL (Evci et al., 2020). RigL and SET are
dynamic sparse training methods in which the sparsity mask
evolves during training. The key difference is that RigL
updates the mask based on gradient information, whereas
SET updates the mask randomly. Results of our ablation
are documented in Table 2. Here, the following trends can
be observed: 1) the Sparse Wide transformation outper-
forms dense baselines across all operating points (sparsity
and sparse training method), 2) dynamic sparse training
methods (RigL and SET) obtain higher accuracies com-
pared to training with static sparsity, and 3) gains with static
sparsity plateau at lower levels of sparsity, while dynamic
sparse training methods gain accuracy at higher sparsities.

Table 3: Evaluation of Sparse-IFTs on CIFAR-100
with ResNet-18 model across different values of sparsity
(columns). Best accuracy of each transformation is high-
lighted in bold. All members of the Sparse-IFT family
outperform the dense baseline by a significant margin.

DENSE TRANSFORMATION 0.50 0.75 0.90

77.0 ± 0.2

SPARSE WIDE 79.1 79.5 80.1
SPARSE FACTORIZED 77.8 78.4 78.9
SPARSE PARALLEL 77.9 79.1 78.2

SPARSE DOPED 78.2 77.8 76.9

As mentioned in Section 2.5, Sparse-IFT transformations
increase the search space ∝ sparsity. Dynamic sparse train-
ing methods can explore and exploit this increased search
space (Stosic & Stosic, 2021) and therefore outperform
training with static sparsity. Out of the two dynamic sparse
training methods evaluated in our study, RigL consistently
outperforms SET. Therefore, we use RigL as our sparse
training method for all the experiments reported below.

Importance of Using Non-Linear Activations Some of
the Sparse-IFTs are inspired by recent works which overpa-
rameterize the feedforward function during training and fold
it back into a single dense matrix post training (Ding et al.,
2021b;a; Guo et al., 2020a; Ding et al., 2019). Although
these works show the benefits of linear overparameterization,
this comes at the cost of a significant increase in training
FLOPs. In contrast, while we also increase the representa-
tional capacity of the feedforward function, we do so with
an Iso-FLOP transformation. Since we remain Iso-FLOP
to the original dense model, we do not require post-training
modifications to collapse weight matrices for inference effi-
ciency. This uniquely allows us to use non-linearities (e.g.,
ReLU) in our Sparse-IFTs to enhance the representational
capacity of the network further. We validate the importance
of this design choice by training ResNet-18 with Sparse Fac-
torized IFT with and without non-linearities, and observe
significant accuracy gains across all sparsity levels when
using non-linear activations. For example, at 90% Sparse
Factorized, using non-linearity, we see a 1.8% gain in test
accuracy over the ResNet-18 CIFAR-100 dense baseline,
compared to a drop of 0.5% without it. These findings hold
for other members of the Sparse-IFT family as well (see
Appendix B.1 for more details).

Sparse-IFT with ResNet-18 In the preceding paragraphs,
we validate the design choices for our method (i.e., the im-
portance of dynamic sparsity and non-linearity). Now, we
evaluate different members of the Sparse-IFT family on
ResNet-18 and CIFAR-100 across different sparsity levels.
Table 3 highlights the best accuracy achieved by each mem-
ber of the Sparse-IFT family. Compared to the accuracy of
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Table 4: Evaluation of Sparse Wide IFT with unstructured
and structured sparsity across different values of sparsity
(columns) on CIFAR-100 with ResNet-18.

DENSE SPARSITY PATTERN 0.50 0.75 0.90

77.0 ± 0.2 UNSTRUCTURED 79.1 79.5 80.1
N:M BLOCK SPARSE 77.1 78.4 78.1

Table 5: Evaluation of Sparse Wide IFT with various com-
pute efficient architectures on CIFAR-100 across different
values of sparsity (columns). Using Sparse Wide IFT, all
architectures outperform the dense by a significant margin.

DENSE 0.50 0.75

MOBILENETV2 72.4 ± 0.2 73.4 73.7
MOBILEVIT-S 73.5 ± 0.1 74.6 74.8

BOTNET-50 79.8 ± 0.2 80.3 80.6

the dense baseline (77%), all Sparse-IFT members obtain
significant accuracy improvements using the same FLOPs
as the dense model. We note that the Sparse Doped transfor-
mation is the only Sparse-IFT which does not gain accuracy
at higher levels of sparsity. We hypothesize that this phe-
nomenon occurs due to two reasons: 1) cardinality of the
search space of the sparsity mask does not increase with
sparsity level (see Table 1), and 2) the number of active
weights in the unstructured matrix decreases ∝ sparsity.

Comparison with Structured Sparsity In this section,
we compare structured sparsity to unstructured sparsity with
Sparse-IFT. In theory, for a fixed number of non-zero ele-
ments in a sparse mask, the use of unstructured sparsity can
search over all the possible variations of the mask. However,
since most hardware accelerators are not able to accelerate
computations with unstructured sparsity, multiple works
have investigated training with structured sparsity (e.g., low-
rank and block-sparse matrices) to obtain wall clock speed-
ups (Khodak et al., 2020; Tai et al., 2016; Chen et al., 2021b;
Hubara et al., 2021; Dao et al., 2022; Chen et al., 2022a).
We study structured sparsity by deriving Iso-FLOP configu-
rations using low-rank and block sparsity with Sparse Wide
transformation. We use the method proposed in Hubara
et al. (2021) to search N:M transposable sparsity, which
can accelerate training on GPUs with Tensor Cores. In our
evaluation, the low-rank factorization results were worse
than block sparsity (see more details in Appendix B.3.2).
Table 4 compares unstructured sparsity to block sparsity.
Although using Sparse-IFT with block sparse matrices lead
to improvements over the dense baseline, unstructured spar-
sity achieves the highest gains. This result can be explained
by the fact that block-sparse matrices have reduced mask
diversity (Hubara et al., 2021) compared to unstructured
sparse matrices.

Table 6: Evaluation of Sparse-IFT on ImageNet. Best result
for each transformation and architecture is highlighted in
bold.

DENSE TRANSFORMATION
SPARSITY

0.50 0.75 0.90

RESNET-18 70.9 ± 0.1 SPARSE WIDE 72.7 73.8 74.4
SPARSE PARALLEL 72.7 73.2 74.0

RESNET-34 74.2 ± 0.1 SPARSE WIDE 75.6 76.4 76.8

BOTNET-50 77.5 ± 0.1 SPARSE WIDE 77.9 78.3 78.5

3.3. Results with Efficient Architectures

To further understand the robustness of Sparse-IFT across
different model families, we evaluate Sparse-IFT on ar-
chitectures that are optimized for efficient inference (Mo-
bileNetV2 (Sandler et al., 2018) and MobileViT (Mehta
& Rastegari, 2021)) and efficient training (BotNet (Srini-
vas et al., 2021)). We transform the dense layers in these
architectures with Sparse Wide IFT and evaluate them at
different sparsity levels. We observe a noticeable increase
in test accuracy across all architectures (see Table 5). In ad-
dition, we demonstrate the robustness of the Sparse-IFTs by
also applying the Sparse Parallel transformation and show
consistent improvement across all architectures (see Ap-
pendix B.3.1). We evaluate the best-performing architecture
(BotNet-50) on ImageNet (see Section 3.4). The details of
the experimental setup can be found in Appendix B.2.

3.4. Results on ImageNet

We take the best-performing Sparse-IFTs (i.e., Sparse Wide
and Sparse Parallel) on CIFAR-100, and evaluate them on
ImageNet using ResNet-18. Both families of Sparse-IFT
obtain significantly higher accuracy compared to the dense
baseline (refer to Table 6). Note, Sparse Wide IFT ResNet-
18 at 90% sparsity improves over the dense baseline by
3.5%, and is able to match accuracy of dense ResNet34
with 2× fewer training FLOPs (see Figure 1). We take the
best-performing transformation (Sparse Wide) and apply it
to ResNet-34 and BotNet-50. Increasing sparsity leads to a
consistent increase in accuracy, indicating improved training
efficiency at higher sparsities across all architectures. On
BotNet-50, a hybrid ViT model, we see a 1% improvement
at 90% sparsity.

3.5. Transfer Learning with Sparse-IFT

To show the effectiveness of pre-training our Sparse-IFT
classification backbones, we evaluate them on 1) object
detection on MS COCO 2017 (Lin et al., 2014b), and 2)
semantic segmentation on CityScapes (Cordts et al., 2016).
For object detection, we adopt the RetinaNet (Lin et al.,
2017b) framework from the MMDetection open-source
toolbox (Chen et al., 2019) and report results in the stan-
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Table 7: Evaluation of Sparse-IFT variants of ResNet-18
as backbones on downstream tasks : (a) Object detection
on MS COCO, (b) Semantic segmentation on Cityscapes.
Sparse Wide IFT ResNet-18 backbones outperform dense
baseline by a significant margin across all metrics on both
tasks.

METRIC DENSE
SPARSITY

0.50 0.75 0.90

MS COCO
AP 29.3 31.3 32.8 34.5

AP50 46.2 49.0 51.0 53.5
AP75 30.9 33.0 34.8 36.5

CITYSCAPES
MIOU 76.7 77.9 78.9 79.1
MACC 84.4 85.1 85.7 86.0

Table 8: Evaluation of Sparse-IFT for pre-training GPT-3
Small from scratch on the WikiText-103 dataset and report
the test perplexity (lower is better) over 3 random seeds.

DENSE 0.50 0.75

GPT-3 SMALL 20.8 ± 0.3 20.4 22.1

dardized training setting. For semantic segmentation, we
utilize DeepLabV3+ (Chen et al., 2018) in the MMSeg-
menation open-source toolbox (Contributors, 2020). We
evaluate ResNet-18 with Sparse Wide transformation (best-
performing transformation on ImageNet). To ensure FLOP-
equivalent comparisons with the dense backbone, we ensure
that Sparse-IFT backbones remain sparse during fine-tuning.
Appendix B.3.3 provides more details regarding the training
setup. We summarize our findings in Table 7. Using Sparse
Wide IFT ResNet-18 backbone leads to significant accuracy
gains across all metrics on both downstream tasks.

3.6. NLP Implementation Details

We evaluate Sparse-IFT by training GPT-3 Small (Brown
et al., 2020) from scratch on the WikiText-103 (Merity
et al., 2017) language modeling task, a commonly used
NLP benchmark dataset. Training large GPT models is very
costly and compute intensive. Although Sparse-IFT does
not increase the training FLOPs, in practice, since GPUs
do not accelerate unstructured sparsity, the wall clock time
to train with Sparse-IFT increases ∝ 1

1−s . For example,
training with 75% sparsity leads to 4x longer wall clock
training time on GPUs. The compute cost and resources
for training quickly become prohibitive when transform-
ing GPT models with Sparse-IFT. Therefore, we believe
Sparse-IFT is well suited for emerging sparse deep learning
hardware accelerators like the Cerebras CS-2 (Lie, 2022a;b).
Hence, we train our GPT models on the CS-2 and leverage
its ability to accelerate training with unstructured sparsity.
We provide more details about performance and wall clock
speed-ups in Section 4. The current implementation of Cere-

bras CS-2’s specialized kernels support training with static
unstructured sparsity; therefore, results in this section are
reported without DST methods.

3.7. Results on GPT End-to-End Training

We train the Sparse Wide IFT GPT-3 Small models at 50%
and 75% sparsity levels, and compare against the standard
dense GPT-3 Small and GPT-3 Medium models. Follow-
ing Dao et al. (2022), we train all models from scratch on
the WikiText-103 dataset and report the average test per-
plexity (PPL) over 3 random seeds in Table 8. We show that
Sparse Wide IFT GPT-3 Small at 50% sparsity improves the
perplexity by 0.4 over its dense counterpart. This result is
inline with dense GPT-3 Medium (20.5 ± 0.2 PPL) while
our Sparse Wide IFT model uses 2.4x fewer training FLOPs.
In Appendix C.1, we provide details on the hyperparameters
and how the total training FLOPs for the models in Table 8
were calculated.

GPT Pre-training and Fine-tuning While not the pri-
mary focus of our method, we note that Sparse-IFT can
also be applied in a fine-tuning setup for NLP models. Af-
ter pre-training sparse, the Sparse-IFT model can be fine-
tuned as-is (i.e., remains sparse) or after densifying (i.e.,
allow the zeroed weights to learn) using a technique such
as SPDF (Thangarasa et al., 2023). We perform some pre-
liminary fine-tuning studies on BERT and GPT and those
results can be found in Appendix C.2.

4. Wall Clock Acceleration with Sparsity
Results presented in Section 3 help validate our hypothesis,
i.e., training DNNs with dense matrices is FLOP ineffi-
cient. Replacing dense layers with Sparse-IFT increases the
training efficiency by providing significantly higher accu-
racy using the same amount of training FLOPS. This result
is significant from a theoretical perspective but does not
translate to direct practical value on hardware that can not
accelerate unstructured sparsity (e.g., Nvidia GPUs, Google
TPUs). However, there has recently been a renewed interest
in hardware software co-design for accelerating unstruc-
tured sparsity. Here, we benchmark Sparse-IFT on these
platforms to demonstrate its practical value. We hope these
results motivate the broader machine learning community
to explore and exploit the benefits of unstructured sparsity
for training and inference.

Setup We evaluate the inference efficiency of Sparse-IFT
using Neural Magic’s sparsity-aware runtime1. We bench-
mark different configurations of the Sparse Wide ResNet-
18 model with sparsity ∈ {50%, 75%, 90%} for batched

1https://github.com/neuralmagic/
deepsparse

https://github.com/neuralmagic/deepsparse
https://github.com/neuralmagic/deepsparse
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inference on ImageNet. We also evaluate the training effi-
ciency of Sparse-IFT on the Cerebras CS-2 which supports
and accelerates training with unstructured sparsity. Techni-
cal details regarding the implementation of the specialized
sparse kernels are beyond the scope of this paper. We plan
to release our code and details about the hardware. We
benchmark different configurations of Sparse Wide GPT-3
1.3B with sparsity ∈ {50%, 75%, 90%} and report seconds/
iteration. More details about our setup can be found in Ap-
pendix D. Our benchmarking results are detailed in Figure
3. We note that configurations of Sparse-IFT at different
values of sparsity do not incur a significant change in the
FLOPs compared to the dense model. On ideal hardware,
FLOPs should translate directly to wall clock time, and the
inference latency or training time for all configurations of
Sparse-IFT should be the same as that of the dense model
(dotted black line). Conversely, when hardware does not
support unstructured sparsity, the latency or training time of
Sparse-IFT variants increases with sparsity (blue line). Our
results lie between these two spectrums (green line). Using
Neural Magic’s inference runtime, we observe significant
speed-up with unstructured sparsity (5.2x at 90% sparsity).
Similarly, we observe significant training speed-up (3.8x at
90% sparsity) on the Cerebras CS-2.
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Figure 3: Benchmarking (left) inference on Neural Magic’s
DeepSparse runtime and (right) training acceleration with
unstructured sparsity on the Cerebras CS-2.

5. Related Work
Our work is similar to the body of work studying the role of
overparameterization and sparsity for training DNNs. The
modeling capacity needed to learn a task is often unknown.
Hence, we often solve this by training overparameterized
models to fully exploit the learning capability and then
compress them into a smaller subnetwork.

Overparameterization Nakkiran et al. (2021) show that
DNNs benefit from overparameterization. Following this,
there have been many works that leverage overparameteri-
zation by scaling the size of models (Rae et al., 2021; Goyal
et al., 2022) and augmenting existing DNNs to increase
modeling capacity and the accuracy of trained networks

(Guo et al., 2020b; Ding et al., 2019; 2021b; Cao et al.,
2022; Vasu et al., 2022; Liu et al., 2022a). These methods
use linear parameterizations of the model, making them
highly inefficient to train, and are focused on improving
inference throughput (reduced latency). In contrast, our
work is focused on improving the modeling capacity using
sparse non-linear parameterizations, which do not increase
training FLOPs compared to the baseline model. While both
approaches have the same inference FLOPs, our approach
improves accuracy without increasing the training FLOPs.

Sparse Training The Lottery Ticket Hypothesis (Frankle
& Carbin, 2018; Frankle et al., 2020) shows that accurate
sparse subnetworks exist in overparameterized dense net-
works but require training a dense baseline to find. Other
approaches have proposed frameworks for identifying lot-
tery tickets (Zhou et al., 2019; Ma et al., 2022) but still
require a tremendous amount of compute resources. Follow-
ing this, various attempts have been made to find the optimal
sparse subnetwork in a single shot. These methods either
try to find the subnetworks at initialization (Tanaka et al.,
2020; Wang et al., 2020a; de Jorge et al., 2020; Lee et al.,
2018) or dynamically during training (Mocanu et al., 2018;
Evci et al., 2020; Jayakumar et al., 2020; Raihan & Aamodt,
2020). However, given a fixed model capacity, these meth-
ods tradeoff accuracy relative to the dense baseline to save
training FLOPs. Stosic & Stosic (2021) and Ramanujan
et al. (2020) increase the search space during sparse training
to retain accuracy; however, do not guarantee FLOPs sav-
ings. In contrast to these methods, our work introduces a set
of non-linear sparse transformations, which increase the rep-
resentational capacity of the network. This approach does
not introduce a new sparse training algorithm, but instead
improves the search space of existing methods, leading to
improved generalization while being efficient to train.

Iso-Parameter vs. Iso-FLOP Recent sparsity literature
is focused on improving generalization at high sparsity
levels. Hence, layer-wise sparsity distributions such as
the Erdös-Rényi-Kernel (Evci et al., 2020), Ideal Gas
Quota (Chen et al., 2022b), and parameter leveling (Gol-
ubeva et al., 2021) are often used with sparse training to
boost accuracies. However, these works target the setting
where the models being compared have a fixed parameter
budget (i.e., Iso-Parameter), which does not translate to
similar training FLOPs to the original dense model (espe-
cially in CNNs). As a result, training models with these
distributions often require different memory or computa-
tional resources per layer. Our approach does not focus on
this Iso-Parameter setting but instead adopts the uniform
sparsity distribution (i.e., every layer gets the same spar-
sity level), ensuring uniform FLOP reductions across the
network. We also ensure the same computational FLOPs
of a dense network by leveraging sparsity along with our
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Iso-FLOP transformations.

6. Conclusion
We introduce a new family of Sparse Iso-FLOP Transfor-
mations (Sparse-IFT) to improve the training efficiency of
DNNs. These transformations can be used as drop-in re-
placements for dense layers and increase the representa-
tional capacity while using sparsity to maintain training
FLOPs. This increase in capacity also translates to a larger
search space allowing sparse training methods to explore bet-
ter and identify optimal sparse subnetworks. For the same
computational cost as the original dense model, Sparse-IFT
improves the training efficiency across multiple model fami-
lies in the CV and NLP domains for various tasks. We hope
our work will open new investigations into improving the
accuracy of DNNs via sparsity, especially as new hardware
accelerators build better support for weight sparsity during
training.
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A. Additional Methodology Details
A.1. Sparse-IFT for Convolutional Layers

In this section, we detail the straightforward extension of the Sparse-IFT family for convolutional layers.

Sparse Wide Similar to the setup for fully connected layers, in the case of convolutional layers, we widen the number of
input and output channels.

Sparse Parallel Similar to the setup for fully connected layers, in the case of convolutional layers, we can implement this
transformation with the use of convolutional branches in parallel.

Sparse Factorized and Sparse Doped Let θl ∈ Rcin×cout×kh×kw represent the weight matrix of a convolutional layer,
where cin, cout, kh, kw denote the input channels, output channels, kernel height, and kernel width, respectively. We
apply low-rank or matrix factorization to the weight matrix by first converting the 4D tensor into a 2D matrix with shape:
(cin ·kh ·kw)× cout. In this setup, we can express θl = UV T , where U ∈ Rcin·kh·kw×d, V ∈ Rcout×d. In this factorization,
U learns a lower-dimensional set of features and is implemented as a convolutional layer with d output channels and kh×kw
filter. V matrix expands this low-dimensional set of features and is implemented as a convolutional layer with 1× 1 filter.

A.1.1. SPARSE-IFT FOR DEPTHWISE CONVOLUTION LAYERS

For a normal convolution layer, all inputs are convolved to all outputs. However, for depthwise convolutions, each input
channel is convolved with its own set of filters. Let θl ∈ Rcin×cout×kh×kw represent the weight matrix of a normal
convolution layer, where cin, cout, kh, kw denote the input channels, output channels, kernel height, and kernel width,
respectively. An equivalent depthwise convolution layer will have weights θdw,l ∈ R1×cout×kh×kw .

Sparse Wide A Sparse Wide depthwise convolution will have weights θswdw,l ∈ R1×ksw·cout×kh×kw . Since the fraction of
non-sparse weights is given by 1− s, the FLOPs required by this transformation are B·(ksw·cout)·kh·kw·(1− s). Setting
these equal to the FLOPs of the original dense θdw,l, we obtain the widening factor ksw = 1

(1−s) . In this case, we do not
scale the input channels as it converts the depthwise convolution to a grouped convolution without an equivalent scaling in
the number of groups.

Other Sparse-IFTs The Sparse Wide transformation generally changes a layer’s input and output channels, subsequently
scaling the following layers in a CNN. However, the other Sparse-IFTs (e.g., Sparse Parallel, Sparse Factorized, and Sparse
Doped) do not modify a convolution layer’s input or output channels (as seen in Figure 2). This allows for fine-grained
control of what layers to apply the Sparse-IFT transformations. Since depthwise convolutions are an extreme form of
structured sparsity, where some filters interact with only specific input channels, we opt not to sparsify them when using the
other Sparse-IFTs and leave the layer unchanged while still maintaining FLOPs equivalent to the dense baseline. Note that
the different convolution layers surrounding the depthwise convolution are still transformed with Sparse-IFT to increase
their representational capacity.

B. Computer Vision: Experimental Settings
B.1. Importance of Non-linearity

We use BatchNorm (Ioffe & Szegedy, 2015) followed by ReLU (Nair & Hinton, 2010) as a non-linearity. We provide an
extended set of empirical results in Table 9 to help validate the importance of training with and without non-linearity by
training configurations of the Sparse Parallel, Factorized, and Doped IFTs at different levels of sparsity. The results without
non-linear activation functions are often worse than the dense accuracy (77%) across all Sparse-IFT family transformations.
We omit Sparse Wide in Table 9 because here we increase the number of channels in the convolutional layers while
maintaining the existing architecture.

B.2. Computer Vision: Pre-Training Settings

CIFAR-100 Our implementation of CIFAR-100 follows the setup from (DeVries & Taylor, 2017) for ResNets. We train
the models for 200 epochs with batches of 128 using SGD, Nesterov momentum of 0.9, and weight-decay of 5×10−4. The
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Table 9: Evaluation on the importance of utilizing the non-linear activation across different members of Sparse-IFT with
ResNet-18 on CIFAR100 across different values of sparsity (columns). Non-linear activations enhance the representational
capacity of Sparse-IFT, leading to higher accuracy. All reported results are the average over 3 random seeds.

TRANSFORMATION NON-LINEAR ACTIVATION 0.50 0.75 0.90

SPARSE FACTORIZED
7 75.9 ± 0.3 76.6 ± 0.4 76.5 ± 0.4
3 77.8 ± 0.4 78.4 ± 0.5 78.9 ± 0.5

SPARSE PARALLEL
7 77.1 ± 0.1 77.2 ± 0.2 77.6 ± 0.1
3 77.9 ± 0.2 79.1 ± 0.2 78.2 ± 0.2

SPARSE DOPED
7 77.3 ± 0.2 77.1 ± 0.1 76.5 ± 0.2
3 78.2 ± 0.1 77.8 ± 0.1 76.9 ± 0.2

learning rate is initially set to 0.1 and is scheduled to decay to decrease by a factor of 5x after each of the 60th, 120th, and
160th epochs. Following recent advances in improving ResNets, we initialize the network with Kaiming He initialization (He
et al., 2016), zero-init residuals (He et al., 2019), and disable weight-decay in biases and BatchNorm (Ioffe & Szegedy,
2015) layers. For CIFAR-100 experiments with MobileNetV2, MobileViT-S, and BotNet-50, we follow the same training
setup used for ResNet, but the learning rate is scheduled via cosine annealing.

ImageNet Our implementation of ImageNet follows the standard setup from (Krizhevsky et al., 2017; Simonyan & Zisser-
man, 2014). The image is resized with its shorter side randomly sampled in [256, 480] for scale augmentation (Simonyan &
Zisserman, 2014). A 224 × 224 crop is randomly sampled from an image or its horizontal flop, and then normalized. For
evaluation, the image is first resized to 256 × 256, followed by a 224 × 224 center crop, and then normalized. Following
recent advances in improving ResNets, we initialize the network with Kaiming He initialization (He et al., 2016) and
zero-init residuals (He et al., 2019).

For ResNets, we replicate the settings recommended by Nvidia (Nvidia, 2019b), which uses the SGD optimizer with a
momentum of 0.875 and weight decay of 3.0517578125×10−5. We disable weight-decay for biases and BatchNorm layers.
The model is trained with label smoothing (Szegedy et al., 2016) of 0.1 and mixed precision (Micikevicius et al., 2018) for
the standard 90 epochs using a cosine-decay learning rate schedule with an initial learning rate of 0.256 for a batch size of
256. Srinivas et al. (2021) follow the same setup as ResNet for training BotNet-50 on ImageNet, therefore we maintain the
same hyperparameter settings as Nvidia (2019b) for our BotNet-50 ImageNet experiments.

Sparsity Setup For enabling the Sparse-IFTs, we use the RigL (Evci et al., 2020) algorithm in its default hyperparameter
settings (α = 0.3,∆T = 100), with the drop-fraction (α) annealed using a cosine decay schedule for 75% of the training
run. We keep the first and last layers (input convolution and output linear layer) dense to prevent a significant degradation in
model quality during pre-training, which is standard practice. We account for these additional dense FLOPs by increasing
the sparsity in the remaining layers, similar to Gale et al. (2019) and Liu et al. (2022b).

B.3. Computer Vision

B.3.1. SPARSE-IFT ON EFFICIENT COMPUTER VISION ARCHITECTURES

Here, we provide an extended set of results on MobileNetV2, MobileViT-S, and BotNet-50 on CIFAR-100. In particular, we
enable Sparse Wide and Sparse Parallel IFT at 50% and 75% sparsity values (see Table 10).

B.3.2. EVALUATION OF SPARSE-IFT WITH STRUCTURED SPARSITY

Block Sparsity For all of our N:M transposable sparsity experiments, we use the official code from Habana Labs 2. To
derive Iso-FLOP configurations with block sparsity, we reuse the analysis done previously with unstructured sparsity (see
Section 2.4) and express the width scaling as a function of sparsity. However, we will search for a block sparse mask during
training instead of an unstructured sparsity mask. We use the method proposed by Hubara et al. (2021) to search N:M
transposable sparsity, which can accelerate both the forward and backward pass during training on NVIDIA GPUs with
Tensor Cores. We use 4:8-T, 2:8-T, and 1:8-T block patterns to obtain 50%, 75%, and 87.5% sparsity, respectively. Note

2https://github.com/papers-submission/structured transposable masks

https://github.com/papers-submission/structured_transposable_masks
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Table 10: Evaluation of Sparse Wide and Sparse Parallel IFT with various compute efficient architectures on CIFAR-100
across different values of sparsity (columns). Using Sparse Parallel IFT, all architectures outperform the dense baseline by a
significant margin.

DENSE TRANSFORMATION 0.50 0.75

MOBILENETV2 72.4 ± 0.2 SPARSE WIDE 73.4 73.7
SPARSE PARALLEL 72.9 73.3

MOBILEVIT-S 73.5 ± 0.1 SPARSE WIDE 74.6 74.8
SPARSE PARALLEL 73.7 74.4

BOTNET-50 79.8 ± 0.2 SPARSE WIDE 80.3 80.6
SPARSE PARALLEL 79.7 80.5

Table 11: Comparison of structured sparse and unstructured sparse methods on CIFAR-100 test accuracy on ResNet-18.

WIDTH SCALING FACTOR
TRANSFORMATION SPARSITY TYPE SPARSITY 1X 1.41X 2X 3.16X

LOW RANK, LINEAR STRUCTURED 0% 74.1 74.3 74.3 73.4
LOW RANK, NON-LINEAR STRUCTURED 0% 76.8 76.5 76.0 75.3

SPARSE WIDE

N:M BLOCK SPARSE
(HUBARA ET AL., 2021)

4:8-T 77.1
2:8-T 78.4
1:8-T 78.1

UNSTRUCTURED SPARSE
(EVCI ET AL., 2020)

50% 79.1
75% 79.5
90% 80.1

the 1:8-T block is the closest approximation to a 90% sparsity pattern attainable with a block size of 8. We also set up and
experimented using the method proposed by Jiang et al. (2022) to train with fine-grained sparse block structures dynamically.
However, the algorithm uses agglomerative clustering which led to a much slower runtime and quickly ran out of memory
even at 50% sparsity using the Sparse Wide transformation on a single Nvidia V100 (16 GB).

Low Rank Let klr be the factor with which we widen all layers’ input and output dimensions for low-rank factorization.
We replace all dense layers with low-rank factorization, i.e. θlrl = UlV

T
l , where Ul ∈ R(klr.Din)×d and Vl ∈ R(klr.Dout)×d.

Given a widening factor and equating the FLOPs of this transformation to that of a dense transformation fθ, we obtain the
following expression for rank d: Din.Dout.klr

(Din+Dout
. We evaluate this factorization across different values of width-scaling klr in

Table 11.

B.3.3. EVALUATION ON DOWNSTREAM TASKS

COCO OBJECT DETECTION

This dataset contains 118K training, 5K validation (minival), and 20K test-dev images. We adopt the standard single-scale
training setting (Lin et al., 2017a) where there is no additional data augmentation beyond standard horizontal flipping. For
training and testing, the input images are resized so that the shorter edge is 800 pixels (Lin et al., 2017a). The model is
trained with a batch size of 16, using the SGD optimizer with a momentum of 0.9 and weight decay of 1×10−4. We follow
the standard 1x schedule (12 epochs) using a step learning rate schedule, with a 10x decrease at epochs 8 and 11, an initial
learning rate warmup of 500 steps starting from a learning rate of 2×10−5, and a peak learning rate of 0.01.

CITYSCAPES SEMANTIC SEGMENATION

Setup We follow the same training protocol as (Zhao et al., 2017), where the data is augmented by random cropping (from
1024 × 2048 to 512 × 1024), random scaling in the range [0.5, 2], and random horizontal flipping. The model is trained
with a batch size of 16, using the SGD optimizer with a momentum of 0.9 and weight decay of 5×10−4. We follow the 80K
iterations setup from MMSegmentation with an initial learning rate of 0.01 annealed using a poly learning rate schedule
to a minimum of 1×10−4. Similar to most setups that tune hyperparameters (Zhao et al., 2017; Liu et al., 2021b; Wang



Sparse Iso-FLOP Transformations for Maximizing Training Efficiency

Table 12: Object detection results on COCO minival in the RetinaNet framework. Sparse Wide IFT configurations of
RetinaNet outperform the dense baseline by a large margin on all metrics while using similar FLOPs.

BACKBONE AP AP50 AP75 APS APM APL

DENSE 29.3 46.2 30.9 14.7 31.5 39.6
SPARSE WIDE (50%) 31.3 49.0 33.0 16.6 34.0 42.0
SPARSE WIDE (75%) 32.8 51.0 34.8 17.3 35.8 43.3
SPARSE WIDE (90%) 34.5 53.5 36.5 18.6 37.6 45.3

et al., 2020b) for reporting the best results, we tune the learning rate for all our models. All our results are reported using a
learning rate of 0.03 for the sparse backbones and 0.01 for the dense baseline.

Table 13: Semantic segmentation results on the Cityscapes val set using DeepLabV3+. Sparse Wide IFT configurations
ResNet-18 backbones outperform the dense baseline on all metrics while using similar FLOPs.

BACKBONE MIOU MACC

DENSE 76.72 84.40
SPARSE WIDE (50%) 77.90 85.12
SPARSE WIDE (75%) 78.92 85.68
SPARSE WIDE (90%) 79.10 86.01

C. Natural Language Processing: Experimental Settings
C.1. Details for GPT End-to-End Training

Our end-to-end training setup for GPT-3 on WikiText-103 follows a similar procedure to Dao et al. (2022). We use a batch
size of 512 and train with the AdamW optimizer for 100 epochs. Also, we use a learning rate warmup for 10 epochs and
a weight decay of 0.1. To discover good hyperparameters, we perform a grid search to discover an appropriate learning
rate among {8e-3, 6e-3, 5.4e-3, 1.8e-3, 6e-4, 2e-4, 6e-5} that led to the best perplexity for a given compute budget on the
validation set. In Table 14, we outline the architecture configurations for the original dense model and its Sparse Wide IFT
50% and 75% variants.

Table 14: Sizes and architecture definitions of the dense GPT-3 Small model and its Sparse Wide IFT variants.

MODEL TRANSFORMATION SPARSITY nlayers dmodel dFF nheads dhead

GPT-3 SMALL DENSE 0% 12 768 3072 12 64
GPT-3 SMALL SPARSE WIDE 50% 12 1092 4344 12 64
GPT-3 SMALL SPARSE WIDE 75% 12 1536 6144 12 64

WikiText-103 End-to-End Training Results We highlight that in Table 15, the Sparse Wide IFT GPT-3 Small at 50%
sparsity attains a better perplexity on WikiText-103 while using 2.4x fewer training FLOPs than the GPT-3 Medium dense
model. In this setup, using Sparse Wide transformation does not change the FLOP of the dense layer, but this leads to a
slight increase in the attention FLOPs. This explains the 1.17x increase in FLOPs between the GPT-3 Small Sparse Wide at
50% sparsity and the dense GPT-3 Small model. Note, out of all the Sparse-IFTs, this increase only occurs in the Sparse
Wide transformation.

C.2. Details for Sparse Pre-training and Dense Fine-tuning (Thangarasa et al., 2023)

We provide an extended set of results that showcase the added benefit of using Sparse-IFTs. Here, we apply the Sparse
Pre-training and Dense Fine-tuning (SPDF) framework introduced by Thangarasa et al. (2023). In this setup, all models
are pre-trained under a similar FLOP budget. However, during the fine-tuning stage, Sparse-IFT models have extra
representational capacity which can be enabled by allowing the zeroed weights to learn (i.e., dense fine-tuning). Even though
the fine-tuning FLOPs are more than the original dense model, we leverage Sparse-IFT method’s extra capacity to obtain
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Table 15: Details on the total training FLOPs for each GPT-3 model tested. We note that the reported FLOPs per sequence
(seq) include both forward and backward passes. The reported perplexity (lower is better) is on the WikiText-103 test set
over 3 random seeds.

MODEL TRANSFORMATION SPARSITY
TOTAL
SEQS

TOTAL FLOPS/
SEQ

TOTAL
FLOPS

TOTAL
EXAFLOPS

PERPLEXITY

GPT-3 SMALL DENSE 0% 2.28E6 8.763E11 2.0011E18 2.00 20.8 ± 0.3
GPT-3 SMALL SPARSE WIDE 50% 2.28E6 1.029E12 2.3498E18 2.35 20.4 ± 0.2

GPT-3 MEDIUM DENSE 0% 2.28E6 2.4845E12 5.6734E18 5.67 20.5 ± 0.2

accuracy gains on the downstream task. To ensure a fair baseline, we also compare dense fine-tuning to sparse fine-tuning
(i.e., pre-trained model remains as-is) similar to Thangarasa et al. (2023).

C.2.1. SPDF ON BERT

Experimental Setup We train BERT models using the open-source LAMB (You et al., 2020) implementation provided
by Nvidia (2019a). In this setup, BERT is pre-trained on the BookCorpus (Zhu et al., 2015) and Wikipedia datasets in two
phases. In the first phase, models are trained for 82% of total iterations with a sequence length of 128. In the second phase,
models are trained for the remaining 18% of iterations with sequence length 512. We use a batch size of 8192 and 4096
in phase 1 and phase 2, respectively. Table 16 shows details of the size and architecture of the BERT Small model. For
finetuning models on SQuADv1.1 (Rajpurkar et al., 2016), we train for two epochs with AdamW optimizer and use a grid
search to tune the learning rate and batch size.

Table 16: Size and architecture of the BERT Small model, which is trained using the setup from Nvidia (2019a)

MODEL nparams nlayers dmodel nheads dhead

BERT SMALL 29.1M 4 512 8 64

SPDF on SQuADv1.1 Results We evaluate BERT Small with Sparse Wide, Sparse Parallel, and Sparse Factorized
members of the Sparse-IFT family. All transformations, except Sparse Parallel, perform comparably to the dense baseline
on SQuAD. Unlike CV architectures, BERT initializes the layers with a normal distribution, which has an adverse effect
when layers undergo shape transformations (e.g., changes in depth (Zhang et al., 2019), or width (Yang et al., 2022)). In our
initial experiments, we found changing the initialization of BERT enables other families to outperform the dense baseline.
In addition to initialization, BERT training has over six hyperparameters. We leave optimizing and analyzing the effect of
these hyperparameters on Sparse-IFT for future work and restrict our current scope to demonstrating gains without tuning
any hyperparameters. Using the Sparse Parallel transformation with 50% sparsity leads to a 0.7% improvement in the exact
match (EM) accuracy over the dense baseline (see Table 17).

Table 17: Evaluation of Sparse Parallel IFT for pre-training BERT Small. We report EM (higher is better) obtained by sparse
fine-tuning and dense fine-tuning BERT models on SQuADv1.1, respectively.

DENSE TRANSFORMATION FINE-TUNING METHOD 0.50 0.75

70.6 SPARSE PARALLEL
SPARSE 70.7 69.9
DENSE 71.3 70.8

C.2.2. SPDF ON GPT

Pre-training Experimental Setup Here, we pre-train the models on the Pile (Gao et al., 2020) dataset. To train all GPT
models, we use AdamW optimizer (Loshchilov & Hutter, 2017) with β1 = 0.9, β2 = 0.999 and ε = 10−8. The global norm
is clipped at 1.0, and a weight decay of 0.1 is used. There is a learning rate warmup over the first 375M tokens, followed
by a cosine decay to 10% of the peak learning rate. We follow the recently published Chinchilla (Hoffmann et al., 2022)
recommendations for obtaining loss-optimal pre-trained baseline configurations of models. The context window size is 2048
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following (Brown et al., 2020). Table 18 shows a detailed breakdown of the model architectures, learning rate, and training
settings. In Table 14, we outline the architecture configurations for Sparse Wide IFT 50% and 75% variants.

Table 18: Size, architecture, and learning hyperparameters (batch size and learning rate) of the GPT-3 Small model, which is
trained using Chinchilla optimal configurations (≈ 20 tokens per parameter)

MODEL nparams nlayers dmodel nheads dhead BATCH SIZE LEARNING RATE TRAINING TOKENS

GPT-3 SMALL 125M 12 768 12 64 256 6×10−4 2.5B

Fine-tuning Experimental Setup We finetune the Sparse Wide IFT variants of GPT-3 Small on the WikiText-103 (Merity
et al., 2017) dataset following the setup presented in (Rae et al., 2021). We finetune for ten epochs and perform early
stopping once the models overfit. We performed a grid search to discover an appropriate learning rate that led to the best
perplexity for a given compute budget. More specifically, on the dense baseline and Sparse Wide IFT variants, we use a
batch size of 32 and select the best learning rate among {5e-3, 3e-3, 1e-3, 3e-4, 1e-4, 3e-5, 1e-5} on the validation set.

In Tables 14, 16, and 18, nparams is the total number of trainable parameters, nlayers is the number of decoder layers, and
dmodel is the base size of the model. The feedforward bottleneck is four times the base size, i.e., dff = 4× dmodel. Finally,
nheads is the number of attention heads, and dhead is the dimension of each attention head.

SPDF on WikiText-103 Results Here, we pre-train a GPT-3 Small architecture with Sparse Wide transformations at 50%
and 75% sparsity. Post pre-training, we finetune our models on WikiText-103. The GPT-3 Small 75% Sparse Wide model
reduces the perplexity (PPL) by a noticeable 1.3 points compared to dense (refer to Table 19).

Table 19: Evaluation of Sparse Wide IFT for pre-training GPT-3 Small. We report perplexity (lower is better) obtained by
sparse fine-tuning and dense fine-tuning GPT models on Wikitext-103, respectively.

DENSE TRANSFORMATION FINE-TUNING METHOD 0.50 0.75

15.9 SPARSE WIDE
SPARSE 15.6 16.0
DENSE 15.1 14.6

D. Wall Clock Acceleration with Sparsity
Inference We use Neural Magic’s DeepSparse (Iofinova et al., 2021; Kurtz et al., 2020) tool for benchmarking Sparse-IFT
variants. The benchmarking is conducted on G4dn instances available on the AWS cloud. These instances support the
AVX-512 instruction set, which is used by the DeepSparse inference runtime to accelerate unstructured sparsity. We report
runtime for batch-inference of 64 images at 224 × 224 resolution.

Training We benchmark the training speed measured in seconds/iteration on a custom hardware accelerator, which
supports and accelerates training using unstructured sparsity. Note that the overall FLOPs of models in the GPT family
are comprised of matrix multiplication FLOPs and attention FLOPs. Attention FLOPs (i.e., spent in multi-head attention)
scale quadratically with sequence length and are invariant to weight sparsity. To demonstrate the efficacy of sparse kernels
for unstructured weight sparsity, we report our results for dense and Sparse Wide variants of the GPT-3 1.3B model with a
sequence length of 256 and batch size of 528.
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